אהבה שנמשכת שנים רבות עד שלפתע מתגלה משהו שלא שמתם לב אליו קודם. מכירים? הנה סיפור אישי: הכרתי אותה כאשר הייתי בשנה ב באוניברסיטה, וזו הייתה אהבה ממבט ראשון: ה-boxplot, או כפי שהיא נקראת בעברית, דיאגרמת הקופסה. כל כך נאה, כל כך אלגנטית, כל כך אינטליגנטית.
הקופסה הירוקה מציגה את החציון ואת שני הרבעונים – התחתון והעליון: . ה-“שפמים” מראים את הנתון המינימלי והנתון המקסימלי, או, כמו בדוגמה הזו, את הגבול שמעליו תצפיות נחשבות לחריגות.
בדוגמה הספציפית הזו, המציגה את הגילאים של חלק מנוסעי הטיטניק, הגיל המינימלי הוא קצת יותר מאפס (תינוק בן 5 חודשים). הרבעון התחתון הוא בערך 20, החציון הוא בערך 28 והרבעון העליון הוא בערך 38. המשמעות היא כי רבע מהנוסעים הם בגילאי 0 עד עד 20, רבע בגילאי 20 עד 28, רבע בגילאי 28 עד 38, והשאר בגילאי 38 ומעלה. כמו כן ניתן לראות כי הגילאים של נוסעים שגילם גבוה מ-65 נחשבים כגילאים חריגים ביחס לגילאים שאר הנוסעים.
בפוסט שפירסם בבלוג הוויזואליזציה נייטינגייל, ניק דספרטס (Nick Desbarats) מסביר למה הוא הפסיק להשתמש ב-boxplot, והוא צודק.
ראשית, דספרטס מספר כי מניסיונו, רוב האנשים בסדנאות שהוא מעביר מתקשים להבין את ה-boxplot, בוודאי בהשוואה לסוגים אחרים של וויזואליזציה. גם כאשר אנשים מבינים את העקרונות של הדיאגרמה, הם עדיין נזקקים ל-“התעמלות קוגניטיבית”, כדבריו, כדי לפרש נכונה את האינפורמציה המוצגת, ונוטים לפרשנות לא נכונה, שוב בהשוואה לאלטרנטיבות ויזואליזציה אחרות. וכאן אני יכול להעיד גם על ניסיוני מהעבר המאוד לא רחוק: בבחינה בקורס המבוא לסטטיסטיקה שלימדתי לא מזמן, היו שתי שאלות על דיאגרמת קופסה שחשבתי כי הן “שאלות מתנה”. למרבה הצער, שיעור הטעויות בשאלות האלה היה גבוה בהשוואה לשאלות אחרות.
דספרטס מביא 3 נימוקים נגד השימוש ב-boxplot, ואסקור אותם כאן בקצרה. הנימוק הראשון הוא של-boxplot אין הגיון וויזואלי. לקופסה יש שטח/נפח בניגוד לשפמים, ולכן היא נתפשת כמייצגת יותר נתונים. אולם, כל חלק של ה-boxplot (שני חצאי קופסה ושני שפמים) מייצג בדיוק את אותה כמות נתונים – כל אחד מהם מייצג רבע מכלל הנתונים (פרט לחריגים). שנית, שני חלקי הקופסה נתפשים ויזואלית כחלק אחד, כלומר ההתרשמות היא כי הנתונים מתחלקים לשלוש קבוצות ולא לארבע. שלישית, אנשים נוטים לקשר אורך עם כמות, ושוב, ה-boxplot מתעלם מכך (בדוגמה שלי, השפם הימני ארוך יותר מאורך הקופסה, בעוד שהוא מייצג חצי מכמות הנותנים שמייצגת הקופסה).
הנימוק השני הוא כי ה-boxplot דורש מהקהל להבין מושגים אבסטרקטיים יחסית, חציון ורבעונים, כאשר לא נדרש צורך אמיתי בכך. בדרך כלל, אם לא מדובר בקהל של סטטיסטיקאים המיומנים בקריאת boxplots, יש צורך להסביר את מבנה ה-boxplot ואת המושגים שהיא מייצגת לפני שדנים במשמעות של הנתונים עצמם. ואין צורך בכך כי יש אלטרנטיבות טובות יותר להצגת נתונים בהם החציון ושאר האחוזונים נתפשים באופן אינטואיטיבי.
הנימוק השלישי, אולי החשוב ביותר, הוא הטענה כי לעיתים קרובות ה-boxplot מציג את ההתפלגות של הנתונים באופן לא נכון, ואף ייתכן כי הboxplots של שתי התפלגויות שונות לגמרי יהיו זהות. בפוסט יש מספר דוגמאות לכך.
אז זהו. אני כנראה אפסיק להשתמש ב-boxplot אלא אם אחשוב שזה ממש הכרחי. למי שמלמד מבוא לסטטיסטיקה, אני ממליץ להפסיק ללמד את ה- boxplot, אם אתם עושים זאת.
- התוכן של הפוסט הזה הופיע לראשונה בניוזלטר של נסיכת המדעים. הרשמו ותקבלו עדכון חודשי על כל מה שקורה עכשיו בסטטיסטיקה: http://www.sci-princess.info/updates