חיפוש באתר

קישורים

עמודים

קטגוריות

ארכיב עבור 'בריאות'

ערך הניבוי החיובי של בדיקת ממוגרפיה לגילוי מוקדם של סרטן השד

אשה בת 50 עברה בדיקת ממוגרפיה לגילוי מוקדם של סרטן השד, והתקבלה תוצאה חיובית.[1] עם זאת, החולה והרופאה יודעות כי הבדיקה אינה מדוייקת ב-100% ותיתכן תוצאה שגויה.

השאלון שואל איזו פרופורציה של נשים שתוצאת הממוגרפיה שלהן חיובית אכן חולות בסרטן השד, וזאת על פי נתוני ה-NHS, שירותי הבריאות הלאומיים של בריטניה. את התשובה קל למצוא בגוגל: בערך אחת מכל ארבע נשים בגילאי 50 עד 70 שנקראות לבירור נוסף עקב תוצאה שאינה שלילית באופן חד משמעי, אחת אכן חולה בסרטן השד. נתון זה נקרא ערך הניבוי החיובי של הבדיקה. פורמלית, נאמר כי ערך הניבוי החיובי של בדיקת ממוגרפיה לגילוי מוקדם של סרטן השד בקרב נשים בגילאי 50 עד 70 הוא 25%. (אני מציע שתעצרו רגע לחשוב האם ערך הניבוי החיובי של 25% הוא סביר בעיניכם. אין תשובה אובייקטיבית לשאלה הזו.)

מכאן שאם תוצאת הבדיקה חיובית, עדיין יש סיכוי של 75% בערך שהנבדקת אינה חולה. כלומר: מתוך כל ארבע נשים בגילאי 50 עד 70 שתוצאת הממוגרפיה שלהן חיובית, שלוש אינן חולות.

לנשים צעירות יותר, ערך הניבוי החיובי נמוך יותר, ולכן ארגוני הבריאות לא ממליצים לנשים מתחת לגיל 50 שאינן נמצאות בקבוצת סיכון לעבור בדיקת ממוגרפיה.

שתי הפסקאות האחרונות עשויות לעורר בכן תמיהה, ובצדק. בדיקת הממוגרפיה היא אותה בדיקה, לא משנה מה גיל האישה שעברה את הבדיקה. אז למה ערך הניבוי החיובי משתנה עם הגיל?

כדי להבין זאת דרוש תחילה הסבר קצר על בניית כלים דיאגנוסטיים כגון בדיקת ממוגרפיה לגילוי מוקדם של סרן השד, או כל בדיקה אחרת.

כאשר מפתחים בדיקה כזו, מסתמכים על נתונים אמיתיים, שבהם אנחנו יודעים גם את תוצאת הבדיקה: חיובית או שלילית, וגם את המצב האמיתי של הנבדק: חולה או בריא. למעשה, הקריטריון לפיו קובעים האם תוצאת הבדיקה חיובית או שלילית נקבע בדרך כלל על סמך המצב הרפואי של הנבדק ותוצאת הבדיקה. כך למשל, אם עורכים בדיקת דם יכולים לקבל טווח של ערכים, ואז קובעים איזשהו קו מפריד כך שהערכים הגבוהים מהקו נחשבים לחיוביים ואלה שמתחת לקו נחשבים שליליים (או להיפך) [2] . בבדיקות ממוגרפיה זה קצת יותר מסובך כי אין תוצאה מספרית, אבל העיקרון דומה.

לאחר שנקבע הקריטריון לפיו מחליטים האם תוצאת הבדיקה חיובית או שלילית, ניתן לחשב כל מיני מדדים המאפיינים את הבדיקה. שני מדדים נפוצים הם הסגוליות (specificity) והרגישות (sensitivity) של הבדיקה, והם, כאמור, מאפיינים של הבדיקה עצמה.

ערך הניבוי החיובי של הבדיקה נקבע על פי שלושה ערכים. שניים מהם הם הסגוליות והרגישות. הערך השלישי הוא ההימצאות (prevalence) של המחלה, כלומר עד כמה המחלה שכיחה באוכלוסייה הנבדקת.[3] . עם קצת אלגברה אפשר לראות כי ככל שהמחלה נפוצה יותר באוכלוסייה, כך ערך הניבוי החיובי של הבדיקה עולה.

מכאן ברור הקשר בין ערך הניבוי החיובי של בדיקת הממוגרפיה ובין הגיל של הנבדקת. בקבוצת האוכלוסייה של נשים צעירות, מתחת לגיל חמישים לצורך הדיון, מחלת סרטן השד נפוצה פחות, ולכן ערך הניבוי החיובי נמוך יותר עבור נשים צעירות יותר. מסיבה זו (ומסיבות נוספות) ארגוני הבריאות לא ממליצים על בדיקת ממוגרפיה לנשים מתחת לגיל 50 שאינן בקבוצת סיכון.

רשימה זו היא הרשימה השמינית והאחרונה בסדרת רשימות העוסקות בהערכת נתונים סטטיסטיים רפואיים, ומסתמכת על השאלון של מרכז וינטון לתקשורת סיכונים ועדויות כמותיות באוניברסיטת קיימברידג’.

ראו גם:

 

 


הערות
  1. התוצאה חיובית אך המשמעות לנבדקת היא שלילית מאוד []
  2. כיצד קובעים את ערך הקו המפריד? זה נושא לרשימה אחרת []
  3. למי שמעוניין בנוסחה – הנה קישור []

יעילות טיפול חדש לאוסטאורופוזיס

נניח כי זה עתה אושר טיפול חדש לאוסטאופורוזיס. נתוני הניסויים הקליניים מראים כי 10% מהחולים שלא טופלו סבלו משבר בצוואר הירך במהלך 3 שנות מעקב, בעוד שבקבוצה דומה של חולים שטופלו בקביעות בטיפול החדש, רק 5% סבלו משבר כזה.

בכמה חולים צריך לטפל בטיפול החדש כדי למנוע שבר אחד?

מתוך 100 חולים לא מטופלים, אנחנו מצפים כי 10 חולים יסבלו משבר. אם נטפל ב-100 חולים, יהיו בממוצע רק 5 חולים שיסבלו משבר. לכן טיפול ב-100 חולים מונעים 5 שברים, ומכאן שכדי למנוע שבר אחד יש צורך לטפל ב-20 חולים.

מדד זה ידוע בשם NNT: ראשי תיבות של Number needed to Treat. ככל שערכו נמוך יותר כך הטיפול יעיל ביותר. הערך הטוב ביותר הוא 1: טיפול כזה ימנע את השבר אצל כל החולים במשך שלוש שנים.

נשווה מדד זה למדדים אחרים. נסדר את הנתונים ההיפותטיים בטבלה:

שבר
טיפול חדש כן לא סך הכל
כן 5 95 100
לא 10 90 100
סך הכל 587 20413 200

 

  • היעילות היחסית של הטיפול[1] היא 50%, מכיוון שהסיכון לשבר הופחת מ-10 מתוך 100 (10%) ל-5 מתוך 100 (50%).
  • היעילות המוחלטת של הטיפול היא 5%: זהו ההפרש בין 10% ו-5%. שימו לב כי ה-NNT שווה ל-1 חלקי היעילות המוחלטת.
  • יחס הסיכויים הוא 0.47. הערך של יחס הסיכויים נמוך מ-1 וזה מציין כי הטיפול החדש עדיף על הטיפול הישן[2]

בדוגמא זו, היעילות היחסית ויחס הסיכויים קרובים זה לזה בערכם, וזאת מכיוון שמספר הסובלים משבר בשתי הקבוצות דומה (90 מול 95), אולם כפי שכבר ראינו, לא תמיד זה המקרה.

 

רשימה זו היא הרשימה השביעית  בסדרת רשימות העוסקות בהערכת נתונים סטטיסטיים רפואיים, ומסתמכת על השאלון של מרכז וינטון לתקשורת סיכונים ועדויות כמותיות באוניברסיטת קיימברידג’.

הנכם מוזמנים לקרוא:


הערות
  1. בדומה לסיכון יחסי של גורם סיכון []
  2. כאן מדברים על “יחס סיכויים” ולא על “יחס סיכונים” כדי לציין שמדובר בתוצאה חיובית. מבחינה מתמטית אין הבדל, כמובן. []

מה הסיכון באכילת בשר מעובד?


בשנת  2014, המכון הבינלאומי לחקר הסרטן   הודיע כי כל סוגי הבשר המעובד, ובכלל זה בייקון, סווגו כגורמי סרטן בדרגה 1. סיווג זה מתייחס לרמת העדויות המחקריות הקיימות המעידות על הקשר בין אכילת בשר מעובד ותחלואה בסרטן, אולם לא על רמת הסיכון. נוסף לכך נמסר כי אכילת בשר מעובד באופן קבוע מגדילה את הסיכון לחלות בסרטן המעי הגס ב-18%. אני ממליץ לכם לקרוא את דף המידע של האיגוד האמריקני לחקר הסרטן בנושא. הנתון של 18% נשמע מפחיד, לא?

כמו כן, ידוע כי בבריטניה הסיכון הכללי לחלות בסרטן המעי הגס במהלך החיים הוא בערך 6% לנשים ו-7% לגברים. המשמעות היא כי מתוך כל 100 נשים אנו מצפים כי כשש נשים יאובחנו כחולות בסרטן המעי גס בשלב כלשהו של מהלך חייהן. מתוך 100 נשים האוכלות בקביעות בשר מעובד, לאיזה מספר של אבחונים נצפה?

החשבון הוא פשוט: 18% מתוך 6 הם 1.08[1] , ולכן מתוך כל 100 נשים האוכלות בשר מעובד נצפה לבערך מקרה נוסף של סרטן המעי הגס, כלומר 7 מתוך מאה במקום 6. הסיכון המוחלט הוא בערך אחוז אחד. לא סיכון שניתן לזלזל בו, אבל הוא הרבה פחות מפחיד מ-18%.

במילים אחרות:

אם את אישה, ואוכלת כל יום 100 גרם בייקון או בשר מעובד אחר במשך כל ימי חייך, הסיכון שלך לחלות בסרטן המעי הגס יהיה בערך 7%, לעומת סיכון של 6% לו היית נמנעת כלל מאכילת בשר מעובד. הפרש הסיכונים הוא בערך 1%.

אם אתה גבר ואוכל מדי יום 100 גרם בייקון או בשר מעובד אחר במשך כל ימי חייך, הסיכון שלך לחלות בסרטן המעי הגס יהיה בערך 9.4%, לעומת סיכון של 8% לו היית נמנע כלל מאכילת בשר מעובד. הפרש הסיכונים הוא בערך 1.4%.

אל תבינו אותי לא נכון: אני לא מזלזל בסיכון המוגדל לתחלואה בסרטן המעי הגס. עליה בסיכון מ-6% ל-7% או מ-8% ל-9.4% היא משמעותית. האיגוד האמריקני לחקר הסרטן אכן ממליץ להפחית את הצריכה של בשר מעובד. עם זאת, הם לא ממליצים להפחית את צריכת הבשר באופן כללי. לא נמצא קשר בין אכילת בשר לא מעובד לבין תחלואה בסרטן, ולאכילת בשר יש גם יתרונות בריאותיים מסויימים. אבל חשוב להבין באילו תנאים העלייה הזו מתרחשת ומה סדר הגודל שלה. הנתון של 18% זורע היסטריה מיותרת, לדעתי.

ועוד הערה: יש הטוענים כי יש להפסיק כלל צריכת בשר מטעמים מוסריים. אני מכבד את כל מי שחושב כך, אבל כאן לא המקום לעריכת הדיון הזה. תגובות ברוח זו יימחקו.

בתיאבון.

 

רשימה זו היא הרשימה השישית  בסדרת רשימות העוסקות בהערכת נתונים סטטיסטיים רפואיים, ומסתמכת על השאלון של מרכז וינטון לתקשורת סיכונים ועדויות כמותיות באוניברסיטת קיימברידג’.

רשימות נוספות בסידרה:


הערות
  1. החישוב הוא: 6×18/100 []

הקשר בין אכילת בשר ותחלואה בסרטן השד – יחסי סיכונים

דרך מקובלת לבטא אפקט של טיפול או התערבות רפואית היא מה שמכונה “יחס הסיכויים”[1] או באנגלית odds ratio. המונח העברי מופיע במרכאות מכיוון, כפי שאסביר מייד, התרגום הוא לא מדוייק עד לא נכון, תלוי את מי שואלים.

השאלה שנשאלה בשאלון היא מאוד פשוטה. נתונה קובייה הוגנת, כלומר כאשר מטילים אותה לכל התוצאות יש סיכוי שווה להופיע. לכן, מהו ה-odds של הטלת המספר 6?

מי שעוסק בהימורים יבין מייד את התשובה. יש 6 תוצאות אפשריות, לכולן אותו סיכוי. חמש תוצאות אפשריות אינן שוות ל-6, יש רק תוצאה אחת השווה ל-6, לכן ה- odds, היחס בין מספר התוצאות הרצויות לבין מספר התוצאות הלא רצויות הוא 1:5. יחס זה מכונה לעיתים בשם “יחס ההימורים”.

שימו לב ש-1:5 אינו אומר כי ההסתברות להטלת 6 היא חמישית. ההסתברות להטלת 6 היא שישית. המשמעות של היחס  1:5 היא שההסתברות להטלת 6 קטנה פי 5 מההסתברות לא להטיל 6. בנוסף לכך, אם נחלק 1 ל-5 נקבל חמישית. נקבל חמישית גם את נחלק את הסיכוי לקבל 6, שהוא שישית, בסיכוי לא לקבל שש, שהוא חמש שישיות. זה תמיד נכון, ולכן יחס זה הוא יחס בין שני סיכויים.

ה-odds ratio, כפי ששמו מעיד עליו, הוא יחס בין שני odds, ומכיוון שה-odds הוא יחס, הרי שה-odds ratio הוא יחס בין שני יחסים, שכל אחד מהם הוא יחס בין שני סיכויים. לכן הביטוי “יחס הסיכויים” בעייתי בעיניי. לעיתים מכנים אותו בשם “יחס צולב”, ואסביר מדוע בהמשך הפוסט.

הנה דוגמה שתסביר מהו ה-odds ratio, ואת הקשר בינו ובין הסיכון היחסי והסיכון המוחלט.

הדוגמה לקוחה מידיעה שפורסמה באתר Medical News Today, בה נאמר כי הסיכון לחלות בסרטן השד אצל נשים הניזונות מתפריט מוטה בשר אדום גבוה ב-23% מהסיכון של נשים הניזונות מתפריט מוטה בשר עוף.

מדובר במחקר תצפיתי בו התבצע מעקב אחרי 42016 אלף נשים הנמצאות בקבוצת סיכון לתחלואה בסרטן השד – לכל אחת מנשים אלו יש אחות שחלתה כבר בסרטן השד. המחקר עקב אחרי הרגלי האכילה שלהן, כולל אכילת סוגי בשר שונים ובשר מעובד. במשך תקופת המעקב, כשבע וחצי שנים, 1536 נשים אובחנו כחולות בסרטן השד. מדובר באשה אחת מתוך כל 27 בערך[2], סיכון לא מבוטל של כ-3.7%. מהו יחס הסיכונים לתחלואה בסרטן השד שנצפה באוכלוסייה זו במשך תקופת המעקב? 1536 נשים אובחנו כחולות בסרטן השד, 40480 נשים לא אובחנו. יחס הסיכונים הוא לכן 1536 ל-40480, או כ-1 ל-26. שימו לב כי הסיכון שונה מיחס הסיכונים.

החוקרים דיווחו כי הסיכון לתחלואה בקרב נשים שאוכלות בעיקר בשר עוף נמוך לעומת הסיכון בקרב נשים האוכלות בעיקר בשר אדום ב-28%.

למעשה הם ביצעו ניתוח הישרדות ודיווחו כי יחס הסיכונים במובן של Hazard Ratio בין אוכלות העוף ואוכלות הבשר האדום הוא 0.72[3]. נתון זה מתקבל מחישוב המתקנן בתוכו משתנים נוספים, כגון גיל, BMI, עישון ומוצא אתני, וכמובן משך הזמן שעבר מתחילת המעקב ועד האבחון.

אבל (על פי החישובים שאפרט בהמשך):

יחס הסיכונים הוא 0.8 לומר הסיכון לחלות בסרטן השד עבור נשים הניזונות מתפריט מוטה בשר עוף נמוך רק ב-20% מהסיכון עבור נשים הניזונות מתפריט מוטה בשר אדום.

הפרש הסיכונים הוא 0.6% בלבד. הסיכון לחלות בסרטן השד עבור נשים הניזונות מתפריט מוטה בשר אדום הוא 3.1% ועבור אלה הניזונות מתפריט מוטה בשר עוף הוא 2.5%.[4]

התובנה שלי: נתוני ה-odds ratio הם בעייתיים, ואין להם פירוש משמעותי ברור. הנתונים של הסיכון היחסי והפרש הסיכונים נותנים תובנה הרבה יותר טובה באשר לגורמי הסיכון.

למי שמעוניין בכל החישובים: עיון יותר מעמיק בנתונים מעלה כי הנתון המתוקנן של  0.72 נגזר מהנתונים הבאים (קישור לקובץ וורד).

מתוך כ-10500 נשים (כרבע מהאוכלוסייה) שאכלו בעיקר בשר אדום, היו 329 מקרי סרטן, ומתוך כ-10500 נשים שאכלו בעיקר בשר עוף היו 258 מקרים.

נסדר את כל הנתונים בטבלה יפה:

תחלואה בסרטן השד
הטיית התפריט כן לא סך הכל
בשר עוף 258 10242 10500
בשר אדום 329 10171 10500
סך הכל 587 20413 21000

 

מה אנחנו יכולים ללמוד מהמספרים האלה?

ה-odds, יחס הסיכונים לחלות בסרטן השד עבור נשים שאוכלות בעיקר בשר עוף הוא 258 ל-10242. עבור נשים שאוכלות בעיקר בשר בקר יחס הסיכונים הוא 329 ל-10171. נחלק את היחסים ונקבל כי היחס בין היחסים הוא 0.78:

 

 

 

תוצאה זו שונה מעט מהתוצאה שדווחה מכיוון שכאמור החוקרים ביצעו תקנונים שאנחנו לא ביצענו.

אבל שימו לב לחישוב: למעשה הכפלנו את שני המספרים שבאלכסון הראשי של הטבלה וחילקנו אותם במכפלת המספרים שבאלכסון המשני של הטבלה. ציירנו מין צלב כזה על הטבלה, ולכן יחס הסיכונים, ה-odds ratio נקרא לפעמים בשם יחס צולב.

 

.רשימה זו היא הרשימה החמישית בסדרת רשימות העוסקות בהערכת נתונים סטטיסטיים רפואיים, ומסתמכת על השאלון של מרכז וינטון לתקשורת סיכונים ועדויות כמותיות באוניברסיטת קיימברידג’.

 

ראו גם:


הערות
  1. ולפעמים – יחס הסיכונים – תלוי בהקשר []
  2. למי שישאל איך קיבלו 1 ל-27 כאשר הנתון שכולם מכירים הוא 1 מתוך 9: הנתון של 1 מתוך 9 מתייחס לסיכון של אישה לחלות בסרטן השד במהלך חייה. תוחלת החיים של אישה ברוב העולם המערבי היא כשמונים שנה. הנתון של 1 מתוך 27 מתייחס אמנם לנשים בסיכון, אך במשך תקופת זמן קצרה בהרבה – רק כשבע וחצי שנים. []
  3. ראו את הרשימה “איך יודעים כמה אנשים מתים מנזקי העישון” להסבר קצת יותר רחב על המושג של ה- Hazard []
  4. שאלה מעניינת: אם אחוז התחלואה הכולל הוא 3.7%, אך התחלואה בעל אחת משתי הקבוצות האלה לחוד נמוכה מ-3.7%? []

הקשר בין טיפול הורמוני חליפי והתפתחות קרישי דם

בתחילת 2019, פורסמה ידיעה בעיתון דיילי מייל לפיה כי טיפול הורמונלי חליפי (Hormone Replacement Therapy) בזמן המנאופוזה מכפיל את הסיכון לקרישי דם מסוכנים, כלשון הכותרת..

בניגוד למה שקורה בדרך כלל, הידיעה ציטטה גם את הנתון הבאשמסרו החוקרים מאוניבריטת נוטינגהאם: “על כל 10000 נשים המקבלות טיפול החלפת הורמונים, יש רק 9 מקרים נוספים של קרישי דם מדי שנה”. זוהי פיסת מידע חשובה. מהו בעצם הנתון הזה?

אני אתעלם מהתשובות הלא נכונות שהוצעו (שינוי באחוזים, מספר החולים שיש לטפל בהם,[1] וקצב קפלן-מאייר) ואעבור מייד להסבר.

הנתון שדווח הוא הגידול המוחלט בסיכון.

לפני שנגיע לדיון, קצת פרופורציות: לפי הכותרת, הסיכון להתפתחות קרישי דם בקרב נשים המקבלות טיפול הורמונלי גבוה פי שניים מהסיכון אצל נשים שלא מקבלות טיפול כזה. זה לא ממש מדוייק. קריאה זהירה במאמר שפורסם ב-BMJ מעלה כי הנתונים שמדווחים אינם סיכונים יחסיים אלא יחסי סיכונים (odds ratios).  אני אדון ביחסי הסיכונים בהמשך הסדרה. כמו כן, יחסי הסיכונים משתנים על פי סוג הטיפול ודרך המתן. מדווחות תוצאות שונות לגבי סוגים שונים של טיפולים הורמונליים, ואכן עבור אחד מהם יחס הסיכונים נאמד כ-2.1, ולטיפולים אחרים היו יחסי סיכונים נמוכים יותר. עבור אחד הטיפולים המקובלים יחס הסיכונים היה נמוך באופן משמעותי מ-1, כלומר לטיפול הספציפי הזה היה אפקט מונע נגד הופעת קרישי דם. יחס הסיכונים המשוקלל על פני כל סוגי הטיפולים היה 1.6 בערך. עד כאן בנוגע לפערים בין כותרות זורעות בהלה ובין המציאות.

מה המשמעות של הגידול המוחלט בסיכון? נניח שאצל כל 10000 נשים שאינן מקבלות טיפול הורמונלי, יש מקרה אחד של היווצרות קרישי דם בכל שנה. הסיכון המוחלט הוא לכן 1 מתוך 10000, (או 0.01%, למי שאוהב אחוזים). לפי דברי החוקרים, עקב הטיפול ההורמונלי יש 9 מקרים נופים בשנה. כלומר, עוד 9 נשים מתוך 10000 יפתחו קרישי דם עקב הטיפול. באחוזים, ובסך הכל יהיו 10 נשים מתוך 10000 שיפתחו קרשי דם.

מה אם ההנחה הראשונה שלנו לא נכונה, ולמעשה מבין במקום אישה אחת, מבין כל 10000 נשים שאינן מקבלות טיפול הורמונלי, קרישי דם מתפתחים אצל 9 נשים? זה לא משנה – הנתון שנמסר עדיין אומרי כי יהיו 9 מקרים נוספים, ובסך הכל 18 במקום 9.

למעשה, אם נפרש את הכותרת של הדיילי מייל כמדווחת על סיכון יחסי, ונניח כי הנתון של תוספת 9 מקרים הוא נתון המשקלל את כל סוגי הטיפולים, נוכל לעשות חישוב לאחור. תוספת של 9 מקרים פירושה הכפלת הסיכון[2], כלומר ללא טיפול יש 9 מקרים ועם טיפול יש 18 מקרים מתוך 10000. אם נבטא את הסיכון באחוזים, נקבל כי הסיכון עלה מ-0.09% ל-0.18%. הפרש הסיכונים הוא רק 0.09%.

 

רשימה זו היא הרשימה הרביעית בסדרת רשימות העוסקות בהערכת נתונים סטטיסטיים רפואיים, ומסתמכת על השאלון של מרכז וינטון לתקשורת סיכונים ועדויות כמותיות באוניברסיטת קיימברידג’.

 

ראו גם:


הערות
  1. במדד זה אדון בהמשך הסדרה []
  2. וזה כאמור לא נכון []