חיפוש באתר

קישורים

עמודים

קטגוריות

ארכיב עבור 'מה אומרת הסטטיסטיקה'

ויזואליזציה של נתוני יחס חוב/תוצר

לפני מספר ימים ראיתי את הגרף הזה בטוויטר:[1]

גיגול קצר העלה כי מדובר בגרף ישן יחסית מאוקטובר 2017. מצד אחד, זהו באמת גרף מאוד יפה ומרשים. מצד שני, מקומו בדפי פייסבוק כגון Trust me, I’m a Statistician או Trust me, I’m a Data Scientist.

גרף זה הוא סוג של דיאגרמת עוגה (pie chart).  בדיאגרמת עוגה קלאסית הפרוסות הן בצורת “משולשים”, או גזרות של עיגול אם רוצים לדייק. כאן לפרוסות יש צורות אחרות, הכוללות משולשים, מרובעים, מצולעים אחרים, וצרות שאין לי מושג מה שמן[2]

אני מודה שהגרף הזה די בילבל אותי. מדובר בנתונים של חוב לאומי ויחס חוב/תוצר. בתחילה התייחסתי לנתון של יחס חוב/תוצר, ומשום מה חשבתי שהשטח של כל פרוסה בעוגה הזו מייצג את יחס החוב/תוצר של כל מדינה. זאת כנראה בגלל שהעין שלי תפסה קודם כל את הכותרת התחתונה.

בפועל, כל פרוסה מראה את החלק של המדינה מתוך סך כל החובות הלאומיים בעולם, ולכן סך כל השטחים אמור להסתכם ל-100%. [3].ניתן לראות בבירור כי המדינה עם החלק הגדול ביותר מתוך סך החובות היא ארצות הברית, ומכאן ג ניתן להסיק כי לארצות הברית יש את החוב המוחלט הגבוה ביותר במונחים דולריים. המדינה עם החלק השני הכי גדול בסך החובות היא יפן, וסין שלישית. מצאו בעוגה את הפרוסות של  איטליה, גרמניה, צרפת ובריטניה. לאיזה מדינה מבין הארבע יש חלק יותר גדול בעוגת סך החובות? האם אתם יכולים לקבוע זאת על ידי השוואת השטחים של הפרוסות?

יחס החוב/תוצר של כל מדינה מבוטא על ידי הצבע של הפרוסה בעוגה. ככל שהצבע בהיר יותר, כך יחס החוב/תוצר גבוה יותר. אפשר לראות מייד כי ליפן יש יחס חוב/תוצר גבוה מאוד. ניתן להבחין כי גם ביוון היחס הזה גבוה, למעשה השני בגובהו. האם אתם יכולים לזהות את המדינה עם היחס השלישי בגובהו? זוהי לבנון. חפשו אותה בפינה הימנית עליונה. איטליה ופורטוגל, שתופסות את המקום הרביעי והחמישי, בולטות יותר. האם אתם יכולים לראות לאיזה מדינה יש את יחס החוב/תוצר הנמוך ביותר?

לאחר שהבנו את הנתונים המוצגים בדיאגרמה הזו, אנו יכולים לנסות למצוא תובנות.

דיאגרמה זו היא למעשה גרף דו-מימדי, במובן שמוצגים בה שני משתנים שונים. בדרך כלל גרפים כאלה אמורים להראות את הקשר בין שני המשתנים. אז מה הקשר בין יחס החוב/תוצר ובין חלק החוב בסך כל החובות? אתם יכולים לראות? כי אני לא יכול. לזכותם של הכותבים ייאמר שהם לא ניסו לדון בכלל בעניין.

האם יש דרך טובה יותר להציג את הנתונים האלה באופן גרפי? כמובן שיש. בואו נשכח את כל מה שראינו עד עכשיו ונשחק קצת בנתונים.

לקחתי את נתוני יחס החוב/תוצר של כל מדינות העולם וגם את נתוני התוצר עצמם מויקיפדיה. לצורך ההדגמה, התמקדתי בנתוני מדינות ה-OECD  משנת 2017. מנתוני יחס החוב/תוצר ונתוני התוצר אפשר כמובן לחשב את גובה החוב, משם את סך החובות, ולבסוף את חלקה של כל מדינה מתוך סך החובות. הנתונים נמצאים כאן.

האפשרות הפשוטה ביותר היא לשרטט תרשים פיזור (scatter plot) משרטטים את הנתונים במערכת צירים, כשכל מדינה מיוצגת על ידי נקודה. המרחק של הנקודה מכל אחד מהצירים מייצג את הערך המתאים של הנתון.

הנה דיאגרמת פיזור בסיסית המציגה את הנתונים שלנו. למעוניינים, קוד R נמצא בגרסה האנגלית של הפוסט הזה.

בדיאגרמה ניתן לראות בבירור כי יש שתי נקודות/מדינות חריגות: אחת מהן עם יחס חוב/תוצר גדול מ-200%, חלקה של השניה בסך כל החובות גבוה מ-30%.

עיון נוסף מגלה מדינה שיחס החוב/תוצר שלה גבוה מ-150%, ועוד שתי מדינות שיחס החוב/תוצר שלהן באיזור ה-130%.

מאחר ויש כלכלנים שסבורים כי חוב גבוה זה רע, וחוב גבוה ביחס לתוצר הוא עוד יותר רע, החלטתי לחלק את הנקודות/מדינות לשלוש קבוצות:

  • בקבוצה הראשונה נכללות המדינות שיחס החוב/תוצר שלהן גבוה מ-100% או שחלקן בסך החובות גבוה מ-10%. אלה המדינות שמצבן הכלכלי “רע” על פי הפרמטרים האלה.
  • בקבוצה השניה נכללות המדינות שיחס החוב/תוצר שלהן נמוך מ-50% וגם חלקן בסך החובות נמוך מ-2%. אלה המדינות שמצבן הכלכלי “טוב” על פי הפרמטרים האלה.
  • הקבוצה השלישית כוללת את כל שאר המדינות.

קווי הגבול בין הקבוצות (2%, 10% וכולי) הם שרירותיים משהו. קבעתי אותם על פי מיטב שיפוטי.[4]

שרטטתי מחדש את הגרף: את הנקודות של המדינות שמצבן “רע” צבעתי באדום, והוספתי לגרף גם את שמה של כל מדינה מקבוצה זו. את הנקודות של המדינות שמצבן “טוב” צבעתי בירוק, ואת שאר הנקודות צבעתי בכתום:

עכשיו ניתן לראות כי:

  • יחס החוב/תוצר של המדינות שמצבן “טוב” משתרע על כל הטווח מ-0 עד 50, אם כי יש בקבוצה זו יותר מדינות שיחס החוב/תוצר שלהן מתקרב ל-50%.
  • מדינות הביניים מתחלקות בערך לשתי קבוצות: קבוצה אחת עם רמת חובות מוחלטת (כאחוז מסך החוב) נמוכה ויחס חוב/תוצר בין 50 ל-75 בערך, וקבוצה שניה של חמש מדינות  עם רמת חובות מוחלטת גבוהה יותר, כאשר לא ניתן לומר אמירה ברורה על מכנה משותף ביניהן לגבי יחס חוב/תוצר.

הערות
  1. הערה: ביצעתי כמה עריכות מינוריות בגרף לצורך ההדגמה בהמשך הפוסט []
  2. ראו לדוגמא את בריטניה בתחתית הדיאגרמה []
  3. לא בדקתי את הנתונים האלה, אני מאמין למי שיצר את הדיאגרמה, וזה גם לא כל כך משנה לדיון כאן []
  4. אם אתם מכירים כלכלן שיכול לקבוע את קווי הגבול באופן יותר מדוייק (במובן accuracy, לא במובן precision) , אשמח אם תכירו לי אותו []

הליידי הטועמת תה קר

הקוראים הוותיקים של הבלוג זוכרים בוודאי את סיפור הליידי הטועמת תה. השאלה שעמדה אז על הפרק הייתה הם ניתן להבדיל בין הטעם של תה שנמזג לתוכו חלב ובין הטעם של חלב שנמזג לתוכו תה. הניסוי שהוכיח כי אכן ניתן להבדיל בין הטעמים הוא אחד הניסויים הקלאסיים בתולדות המדע בכלל והסטטיסטיקה בפרט.

אנוכי הקטן ניסיתי היום לברר את התשובה לשאלה לא פחות חשובה.

בבית הספר של בני הצעיר נערך מדי שנה “יום ההורה המעשיר”, בו הורים מגיעים לבית הספר ומעבירים לתלמידים שיעורים בנושאים שונים לפי בחירתם, רצוי בנושאים שהם מבינים בהם משהו. ואני מה אני מבין? בקושי קצת סטטיסטיקה. לכן החלטתי לשחזר את ניסוי הליידי הטועמת תה.

השאלה שעמדה על הפרק היא האם יש הבדלים בין הטעם של שני המותגים המובילים של תה קר בישראל: נסטי ופיוז טי. וזו שאלה קריטית, מכיוון שבני הוא חסיד של אחד המותגים האלה ומסרב בכל תוקף לצרוך את המותג השני, דבר שמטיל על משפחתנו הקטנה מגבלות בלתי סבירות.

כמובן שאת השיעור התחלתי בסקירה קצרה של נושא תכנון הניסויים ותיאור הניסוי הקלאסי של פישר, אבל גולת הכותרת הייתה הניסוי עצמו.

תכנון הניסוי היה כדלקמן: בכל שלב, הוצגו לאחד התלמידים[1] שתי כוסות תה קר. לעיתים בשתי הכוסות נמזג אותו מותג תה, לעיתים בכל כוס נמזג מותג אחר. לאחר טעימה ורחרוח היה על שפן הניסוי לומר האם הוא חש בהבדל טעמים בין הכוסות או לא.

ההחלטה האם למזוג לתוך שתי הכוסות את אותו סוג תה או האם למזוג לכל כוס סוג אחר נקבעה על ידי הטלת מטבע. במקרה שהגורל קבע כי לשתי הכוסות יימזג אותו מותג תה, הטלת מטבע נוספת קבעה את המותג שיימזג לשתי הכוסות.

הזמן שלנו הספיק לביצוע של 17 טעימות, והנה התוצאות:

 

 

 

 

 

 

 

 

האם הטועם צדק
כן לא סך הכל
האם תכולת הכוסות זהה כן 5 5 10
לא 4 3 7
סך הכל 9 8 17

 

המסקנה שלי היא כי לא נמצאה עדות להבדלים בטעמים בין שני המותגים[2].  הבן שלי שוכנע. בארוחת הצהריים הוא שתה להנאה מהמותג שעד כה הוחרם. הניסוי הוכתר כהצלחה.


הערות
  1. אני נצמד לכללי האקדמיה ללשון העברית, אבל אני גם חייב לציין כי מספר הבנות היה גדול פי 3 ממספר הבנים []
  2. אתם מוזמנים לערוך מבחן חי בריבוע או מבחן פישר []

ממתאם לסיבתיות – הקשר בין עישון ותחלואה בסרטן הריאה

עדויות בדבר הקשר בין עישון ותחלואה בסרטן הריאה החלו להופיע כבר בתחילת המאה העשרים, ומספר רב של מחקרים שנערכו בשנות הארבעים והחמישים של המאה העשרים סיפקו עדויות נוספות לקשר הזה. בפוסט זה אני סוקר את העדויות המחקריות שהראו את הקשר בין עישון סיגריות ותחלואה בסרטן, ואת השיקולים שהובילו לביסוס הקשר הסיבתי לפיו עישון הוא גורם הסיכון העיקרי לתחלואה בסרטן הריאה, וגיבוש הקונצנזוס המדעי התומך בטענה זו.

עדויות בדבר הקשר בין עישון ותחלואה בסרטן הריאה

בסוף המאה ה-19 התחלואה בסרטן הריאה הייתה נדירה. בבית החולים של אוניברסיטת דרזדן, מקרי סרטן הריאה היוו כאחוז אחד מבין כל הסרטנים שזוהו בניתוחים שלאחר המוות. שיעור זה עלה  ל-10% בשנת 1918, ול-14% ב-1927.

הועלו מספר השערות לגורמים סביבתיים אשר עשויים להסביר את הזינוק בתחלואה: עליה בזיהום תעשייתי, התרחבות השימוש באספלט לסלילת כבישם, זיהום אויר ממכוניות שמספרן עלה בהדרגה, חשיפה לגז במלחמת העולם הראשונה, ואפילו מגיפת השפעת של 1918. עם זאת, עליה בתחלואה נצפתה גם כאשר לא הייתה חשיפה לגורמים אלה.

הראשון שהצביע על הקשר בין העלייה בתחלואה בסרטן והריאה ובין העלייה בפופולריות של עישון סיגריות היה ככל הנראה המדען הגרמני פריץ ליקינט, שהראה ב-1929 כי שיעור המעשנים בקרב חולים בסרטן הריאה גבוה משיעורם באוכלוסייה הכללית. ממצאיו של ליקינט שוחזרו בשני מחקרים שפורסמו בגרמניה ב-1940 ו-1943. במחקרים אלה נצפה כי מספר המעשנים בקבוצה של חולי סרטן הריאה היה גבוה בערך פי 30 ממספר המעשנים בקבוצת ביקורת שהורכבה מאנשים בעלי רקע דומה, אך אינם חולים בסרטן הריאה. חמישה מחקרים שונים שנערכו בבריטניה ובארצות הברית בשנת 1950 הגיעו למסקנות דומות. מחקרים מסוג זה הינם מחקרים רטרוספקטיביים; נבחרו בהם שתי קבוצות: קבוצה אחת של חולים בסרטן הריאה וקבוצת ביקורת של אנשים, חולים או בריאים, מרקע דומה[1] שאינם חולים ברטן הריאה. המסקנה שעלתה ממחקרים אלה היא שהסיכוי כי אדם שחולה בסרטן הריאות הינו מעשן גבוה מהסיכוי שאדם שאינו חולה בסרטן הריאה הינו מעשן. מחקרים אלה לא עונים על השאלה מהו הסיכון של אדם מעשן לחלות בסרטן היראות לעומת אדם שאינו מעשן. נגיע לסוגיה זו בהמשך.

עדויות נוספות לקשר בין טבק וסיגריות לבין תחלואה בסרטן הגיעו מניסויים בבעלי  חיים. ניסויים שערך החוקר הגרמני ברוש בשנת 1900 העלה כי חשיפה לתמצית המופקת מעלי טבק העלתה את התחלואה בסרטן אצל עכברים בהשוואה לקבוצת הביקורת. תוצאות אלה אושרו במספר רב של מחקרים שנערכו בשנות ה-30 ובתחילת שנות ה-40, שכללו מינם שונים של בעלי חים וסוגי חשיפה שונים, כולל חשיפה לעשן סיגריות. רוב המחקרים בנושא בוצעו על ידי החוקר הארגנטינאי/גרמני אנגל רופו. ב-1953, ניסוי בו “נמרח” משקע (tar) הנוצר על ידי עישון סיגריות על עורם של עכברים זכה לתהודה רבה. הניסוי הראה כי העכברים ש-“זכו לטיפול” זה פיתחו מספר גדול באופן משמעותי של גידולים סרטניים בהשוואה לקבוצת הביקורת. המגזין Time הכריז כי ניסוי זה הוכיח את הקשר בין עישון ותחלואה בסרטן מעבר לכל ספק.

סוג שלישי של עדויות לקשר בין עישון בתחלואה בסרטן הריאה היו עדויות פתולוגיות. בניתוחים שלאחר המוות אצל מעשנים, לאו דווקא כאלה שחלו בסרטן הריאה, נצפו הבדלים פתולוגיים בתאי הריאה בין מעשנים ובין לא מעשנים. המחקר הראשון שהצביע על הבדלים כאלה התפרסם בשנת 1932.

כמו כן, מחקרים הראו כי מספר כימיקלים הנמצאים במשקעים הנוצרים על ידי העישון (tar) ובעשן הסיגריות הינם קרצינוגניים, כלומר חשיפה אליהם גורמת לסרטן. שוב, תגליות רבות אודות קיומם של חומרים כאלה בעשן ובמשקע נעשו על ידי אנגל רופו, שפרסם את המממצא הראשון שלו ב-1939. מחקרים שנעשו בסוף שנות ה-40 ותחילת שנות ה-50 חשפו כימיקלים קרצינוגניים נוספים הקשורים בסיגריות.

עם זאת, עדיין לא הייתה תשובה לשאלה החשובה מכולן: האם הסיכון של אדם מעשן לחלות בסרטן הריאה גבוה מהסיכון של אדם שלא מעשן, ואם כן, עד כמה ההבדל בין הסיכונים משמעותי?

כדי לענות על שאלה זו, יש צורך במחקר פרוספקטיבי. במחקר כזה מתחילים לעקוב אחרי שתי קבוצות של אנשים: מעשנים ולא מעשנים, ועוקבים אחריהם לאורך זמן. שני מחקרים גדולים מסוג זה נערכו בשנות ה-50.

המחקר הראשון נערך בארצות הברית בין 1952 ל-1955, ותוצאותיו פורסמו בתחילת 1958. הוא כלל כ-187 אלף נבדקים, גברים בגילאים 50 עד 70. תקופת המעקב הראשונית הייתה קצרה יחסית, 44 חודשים, אולם המדגם  הגדול איפשר זיהוי הבדלים בין קבוצת המעשנים וקבוצת הלא מעשנים, אם יש כאלה במסגרת הזמן הזה. המחקר, שהובילו החוקרים האמונד והורן, העלה כי שיעור התמותה הכולל (מכל סיבה שהיא) בקרב המעשנים היה גבוה ב-57% משיעור התמותה בקרב לא מעשנים. גם שיעור התמותה במחלות לב היה גבוה ב-50%. שיעור התמותה מסרטן בקרב המעשנים היה גבוה כמעט פי 2 בהשוואה לאותו נתון בקרב הלא מעשנים. כאשר מדובר במוות עקב מחלה ריאתית כלשהי (לא כולל סרטן), שיעור התמותה בקרב מעשנים היה גבוה פי 2.85 בהשוואה ללא מעשנים. במחלות אחרות לא נצפו הבדלים משמעותיים. תקנון על פי גיל לא הביא לשינוי משמעותי בתוצאות. עם זאת, עלה כי בקרב מעשני סיגרים או מקטרת, וכן בקרב מעשנים מזדמנים, ההבדלים בשיעורי התחלואה והתמותה היו נמוכים יותר בינם ובין הלא מעשנים. המחקר הראה גם כי שיעורי התחלואה והתמותה עולים עם כמות העישון היומי – יותר סיגריות ביום = סיכון גבוה יותר. שיעור מקרי המוות בין אלה המעשנים חבילת סיגריות או יותר ביום כמעט כפול משיעור המקרים בקרב אלה המעשנים פחות מחבילה ביום.

מחקר נוסף נערך בבריטניה על ידי ריצ’רד דול ואוסטין ברדפורד היל. זה היה מחקר בהיקף קטן יותר, כ-40 אלף איש, כולם רופאים. עם זאת, תקופת המעקב הייתה ארוכה יותר. תוצאות ראשוניות שפורסמו ב-1956, העלו ממצאים דומים לאלה שנצפו במחקר של האמונד והורן. המעקב אחרי הרופאים נמשך עד שנת 2001. נמצא כי עישון מקצר את תוחלת החיים בכ-10 שנים. יותר מ-50% מהמעשנים מתו מסרטן או ממחלות לב. גם מחקר זה הראה כי הסיכון עולה עם כמות הסיגריות שהחולה מעשן.

ממתאם לסיבתיות – האם עישון הוא גורם סיכון לתחלואה בסרטן הריאה?

ג'רום קורנפילד

ג’רום קורנפילד

כל המחקרים שתוארו עד כה אינם מוכיחים סיבתיות, לפחות ברובם. אמנם הניסויים בבעלי חיים היו ברובם ניסויים מבוקרים, בהקצאה פחות או יותר רנדומלית, אולם האם ניתן לגזור מהם מסקנות לגבי בני אדם? גם המחקרים הפרוספקטיביים שצפו בבני אדם לאורך זמן, היו, ובכן, ניסויים תצפיתיים. לא הייתה הקצאה רנדומלית לקבוצת מעשנים וקבוצת לא מעשנים: זה בלתי אפשרי לא מבחינה אתית ולא מבחינה מעשית. שתי הקבוצות היו שונות זו מזו באופן מהותי: אלה בחרו לעשן ואלה לא, ולא ניתן לשלול את האפשרות שיש ביניהן הבדלים מהותיים נוספים.

את המשימה לענות לכל דברי הביקורת שנמתחו על רוב המחקרים לקחו על עצמם ג’רום קורנפילד מהמחלקה לביוסטטיסטיקה באוניברסיטת ג’ונס הופקינס ועמיתיו. במאמר שפורסם ב-1959, הביאו קורנפילד ועמיתיו סקירה של כל העדויות בדבר הקשר בין עישון ותחלואה בסרטן וענו לכל הביקורת שנמתחו על המחקרים השונים. הביקורות סווגו לחמישה נושאים מרכזיים: ארבעה מהם עוסקים בנתונים ולאוכלוסיות במחקרים השונים, בתקפות של המחקרים הרטרוספקטיביים והפרוספקטיביים, בתקפות של הממצאים הפתולוגיים ובתקפות של תוצאות ניסויי המעבדה. אני לא אסקור כאן את כל הנושאים האלה. אני בהחלט ממליץ לכל מי שמתעניין בסטטיסטיקה ובאפידמיולוגיה לקרוא את המאמר.

אסקור כאן רק את התגובה של קורנפילד ועמיתיו לביקורת העוסקות בפרשנות לתוצאות שהתקבלו. (מעתה אתייחס רק לקורנפילד כאל מייצג הכותבים).

קורנפילד מסביר כי ישנן שלוש פרשנויות אפשריות לנתונים. האפשרות הראשונה היא כי עישון גורם לסרטן. האפשרות השניה היא כי סרטן גורם לעישון, דבר שניתן להצדיק על ידי הנחה של קיום מצב “קדם-סרטני”, המתבטא בתחילה על ידי צורך לניקוטין ומאוחר יותר בסרטן עצמו. האפשרות השלישית היא קיומו של גורם משותף, אולי גנטי, אשר גורם לאנשים גם לעשן וגם לחלות בסרטן.

מי שהציע את האפשרות השניה היה רונלד פישר. המשמעות של האפשרות הזו היא קיומם של גידולים סרטניים שאובחנו רק בגיל 50 אבל החלו להתפתח לפני גיל 18, שהוא הגיל החציוני לתחילת העישון. מכיוון שאין שום עדות או ממצא התומכים בכך, קורנפילד דוחה את הטענה על הסף.

באשר להשערת הגורם במשותף, קורנפילד טוען כי הנתונים והעדויות שנאספו עד כה הינם קונסיסטנטיים עם הטענה כי עישון גורם לסרטן אך לא עם הטענה של קיום גורם משותף. טענתו היא כי תיאוריית הגורם המשותף אינה עולה בקנה אחד עם: השינוי והעליה בתפוצה של סרטן הריאה ב-50 השנים האחרונות, העדויות לקרצינגוניות של משקעי העישון בניסויים בחיות, התמותה הפחותה מסרטן הריאה בקרב מעשנים שהפסיקו לעשן, וההבדלים שנצפו בין מעשני סיגריות ובין מעשני סיגרים או מקטרות. גם אם כל אחד מארבעת הנימוקים אינו טיעון מספק נגד השערת הגורם המשותף, טוען קורנפילד, צירופם יחד אינו מאפשר “התייחסות רצינית” לטענת הגורם המשותף. קורנפילד מבהיר למעשה כי נטל הוכחת טענת הגורם המשותף מוטל על הטוענים את הטענה.

לבסוף עובר קורנפילד לדון בביקורת על “השערת הסיבתיות”, כלומר הטענה כי עישון גורם לתחלואה בסרטן הריאה. בתחילה הוא מטפל ברונלד פישר, שטען כי אין התאמה בין ההבדלים בעליית התחלואה בסרטן הריאה בין נשים וגברים, כאשר בקרב הגברים התחלואה גבוה יותר, ובין קצב העליה בשיעור הנשים המעשנות שהינו גבוה מקצב העליה בשיעור הגברים המעשנים. תשובתו של קורנפילד היא שטענתו של פישר לא נתמכת על ידי הנתונים הקיימים.

טענה נוספת נגד הקשר הסיבתי בין עישון ותחלואה ותמותה מסרטן הריאה, היא כי במחקרים נאספו למעשה נתוני תמותה ולא נתוני תחלואה, כאשר יש סיבות רבות לתמותה. בקרב מעשנים נצפתה עליה בתמותה גם ממחלות לב, מחלות ריאתיות ואחרות, אך לא מסיבות אחרות כגון תאונות. לכן, טען ארקין[2] עישון אינו הגורם לתחלואה אלא רק סימפטום: אנשים אלה לא שומרים על בריאותם באופן כללי, ובפרט מעשנים. גם ברקסון העלה טענה דומה. בנוסף לטענת “העישון הוא סימפטום” שהעלה ארקין, טוען ברקסון כי אין זה סביר שגורם אחד יהווה גורם סיכון למספר מחלות. ברקסון טוען למעשה כי העקרונות של רוברט קוך מופרים.

קורנפילד משיב כי אין שום בעיה בטענה שגורם סיכון אחד יכול לגרום למספר תוצאות. הוא מביא כדוגמה את הערפל הגדול בלונדון שאירע ב-1952, אשר גרם לעליה בתמותה ממספר סיבות, בעיקר מחלות נשימתיות ומחלות לב כליליות. הוא מסביר כי עשן הסיגריות אינו חומר אחיד, אלא תערובת של מאות כימיקלים שונים, שרק התכונות של חלק מהם נחקרו עד כה. לדעת קורנפילד, אין זה מתקבל על הדעת כי כל החומרים האלה גורמים לאותה תוצאה. עולם שבו יש התאמה חד-חד-ערכית בין סיבה לתוצאה הינו ללא ספק יותר קל יותר להבנה, אך אנו איננו חיים בעולם כזה.

קורנפילד מודה כי אכן יש צורך במחקר נוסף כדי להבין את המנגנון המקשר בין העישון ובין התפתחות הסרטן ומחלות אחרות. אולם הוא מסביר כי אין די בכך כדי לשלול את קיומו של קשר סיבתי, מה גם שהנתונים שנאספו עד כה עולים בקנה אחד עם קיומו של קשר סיבתי.

לסיום מתייחס קורנפילד לשאלה מדוע ישנם מעשנים שאינם חולים בסרטן הריאה ומאידך יש אנשים שאינם מעשנים ובכל זאת חולים, ומודה שהתשובה לכך לא ידועה. הוא מביא לדוגמה את “אסון ליבק“, מקרה בו 251 תינוקות קיבלו חיסון לשחפת אשר היה מזוהם בזן פעיל של חיידק הגורם למחלה. למרות זאת, כעשירית מהתינוקות לא פיתחו כלל תסמינים של דלקת ריאות. האם נתון זה סותר את הטענה כי אותו חיידק דורם לדלקת ריאות?

קורנפילד מסיים ואומר כי למרות שהנתונים אינם מושלמים, כמעט ואין מחלוקת על כך שהנתונים מראים כי עישון הוא גורם סיכון בריאותי, וכי הוא ועמיתיו אינם יכולים לקבל את הטענה כי עישון הוא הרגל בלתי מזיק.

מקורות

  • Proctor, R. N. (2012). The history of the discovery of the cigarette–lung cancer link: evidentiary traditions, corporate denial, global toll. Tobacco control, 21(2), 87-91. (pdf)
  • Witschi, H. (2001). A short history of lung cancer. Toxicological sciences, 64(1), 4-6. (pdf)
  • Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M., Shimkin, M. B., & Wynder, E. L. (1959). Smoking and lung cancer: recent evidence and a discussion of some questions. Journal of the National Cancer institute22(1), 173-203. (pdf)

הפוסטים הקודמים בסדרה

הפוסטים הבאים בסדרה


הערות
  1. מבחינת גיל, מין וכדומה []
  2. כל ההפניות נמצאות במאמר של קורנפילד ועמיתיו []

ערך הניבוי החיובי של בדיקת ממוגרפיה לגילוי מוקדם של סרטן השד

אשה בת 50 עברה בדיקת ממוגרפיה לגילוי מוקדם של סרטן השד, והתקבלה תוצאה חיובית.[1] עם זאת, החולה והרופאה יודעות כי הבדיקה אינה מדוייקת ב-100% ותיתכן תוצאה שגויה.

השאלון שואל איזו פרופורציה של נשים שתוצאת הממוגרפיה שלהן חיובית אכן חולות בסרטן השד, וזאת על פי נתוני ה-NHS, שירותי הבריאות הלאומיים של בריטניה. את התשובה קל למצוא בגוגל: בערך אחת מכל ארבע נשים בגילאי 50 עד 70 שנקראות לבירור נוסף עקב תוצאה שאינה שלילית באופן חד משמעי, אחת אכן חולה בסרטן השד. נתון זה נקרא ערך הניבוי החיובי של הבדיקה. פורמלית, נאמר כי ערך הניבוי החיובי של בדיקת ממוגרפיה לגילוי מוקדם של סרטן השד בקרב נשים בגילאי 50 עד 70 הוא 25%. (אני מציע שתעצרו רגע לחשוב האם ערך הניבוי החיובי של 25% הוא סביר בעיניכם. אין תשובה אובייקטיבית לשאלה הזו.)

מכאן שאם תוצאת הבדיקה חיובית, עדיין יש סיכוי של 75% בערך שהנבדקת אינה חולה. כלומר: מתוך כל ארבע נשים בגילאי 50 עד 70 שתוצאת הממוגרפיה שלהן חיובית, שלוש אינן חולות.

לנשים צעירות יותר, ערך הניבוי החיובי נמוך יותר, ולכן ארגוני הבריאות לא ממליצים לנשים מתחת לגיל 50 שאינן נמצאות בקבוצת סיכון לעבור בדיקת ממוגרפיה.

שתי הפסקאות האחרונות עשויות לעורר בכן תמיהה, ובצדק. בדיקת הממוגרפיה היא אותה בדיקה, לא משנה מה גיל האישה שעברה את הבדיקה. אז למה ערך הניבוי החיובי משתנה עם הגיל?

כדי להבין זאת דרוש תחילה הסבר קצר על בניית כלים דיאגנוסטיים כגון בדיקת ממוגרפיה לגילוי מוקדם של סרן השד, או כל בדיקה אחרת.

כאשר מפתחים בדיקה כזו, מסתמכים על נתונים אמיתיים, שבהם אנחנו יודעים גם את תוצאת הבדיקה: חיובית או שלילית, וגם את המצב האמיתי של הנבדק: חולה או בריא. למעשה, הקריטריון לפיו קובעים האם תוצאת הבדיקה חיובית או שלילית נקבע בדרך כלל על סמך המצב הרפואי של הנבדק ותוצאת הבדיקה. כך למשל, אם עורכים בדיקת דם יכולים לקבל טווח של ערכים, ואז קובעים איזשהו קו מפריד כך שהערכים הגבוהים מהקו נחשבים לחיוביים ואלה שמתחת לקו נחשבים שליליים (או להיפך) [2] . בבדיקות ממוגרפיה זה קצת יותר מסובך כי אין תוצאה מספרית, אבל העיקרון דומה.

לאחר שנקבע הקריטריון לפיו מחליטים האם תוצאת הבדיקה חיובית או שלילית, ניתן לחשב כל מיני מדדים המאפיינים את הבדיקה. שני מדדים נפוצים הם הסגוליות (specificity) והרגישות (sensitivity) של הבדיקה, והם, כאמור, מאפיינים של הבדיקה עצמה.

ערך הניבוי החיובי של הבדיקה נקבע על פי שלושה ערכים. שניים מהם הם הסגוליות והרגישות. הערך השלישי הוא ההימצאות (prevalence) של המחלה, כלומר עד כמה המחלה שכיחה באוכלוסייה הנבדקת.[3] . עם קצת אלגברה אפשר לראות כי ככל שהמחלה נפוצה יותר באוכלוסייה, כך ערך הניבוי החיובי של הבדיקה עולה.

מכאן ברור הקשר בין ערך הניבוי החיובי של בדיקת הממוגרפיה ובין הגיל של הנבדקת. בקבוצת האוכלוסייה של נשים צעירות, מתחת לגיל חמישים לצורך הדיון, מחלת סרטן השד נפוצה פחות, ולכן ערך הניבוי החיובי נמוך יותר עבור נשים צעירות יותר. מסיבה זו (ומסיבות נוספות) ארגוני הבריאות לא ממליצים על בדיקת ממוגרפיה לנשים מתחת לגיל 50 שאינן בקבוצת סיכון.

רשימה זו היא הרשימה השמינית והאחרונה בסדרת רשימות העוסקות בהערכת נתונים סטטיסטיים רפואיים, ומסתמכת על השאלון של מרכז וינטון לתקשורת סיכונים ועדויות כמותיות באוניברסיטת קיימברידג’.

ראו גם:

 

 


הערות
  1. התוצאה חיובית אך המשמעות לנבדקת היא שלילית מאוד []
  2. כיצד קובעים את ערך הקו המפריד? זה נושא לרשימה אחרת []
  3. למי שמעוניין בנוסחה – הנה קישור []

מה מספר הכדורים האדומים בכד? – אמידת נראות מירבית

בכד יש 90 כדורים, חלקם אדומים וחלקם לבנים. נאמר לכם כי מספר הכדורים האדומים הוא 45 או 60 (אין אפשרות אחרת).

אתם מוציאים מהכד 300 כדורים עם החזרה, כלומר: מערבבים היטב את תכולת הכד, מוציאים כדור, רושמים את צבעו, ומחזירים אותו לכד. אחר כך מערבבים שוב את תכולת הכד, מוציאים שוב כדור, רושמים את צבעו ומחזירים אותו לכד, כך 300 פעמים.

בסך בכל הוצאתם 175 כדורים אדומים מתוך 300. מהי ההערכה שלכם לגבי מספר הכדורים האדומים בכד?

הנה התשובות שקיבלתי לחידה הזו בטוויטר:

 

בואו נעשה קצת סדר.

ראשית, לגבי הבקשה להעריך את מספר הכדורים האדומים בכד: בשפה יותר “סטטיסטית”, הבקשה היא לאמוד את מספר הכדורים האדומים בכד, ולכן אשתמש מעתה בביטויים כגון “לאמוד” ו-“אומדן”.

אם בכד יש 45 כדורים אדומים, אז ההסתברות להוציא מתוכו כדור אדום היא 45 מתוך 90, כלומר חצי. לכן בעולם מושלם, מתוך 300 כדורים ששלפתם, מחציתם היו אדומים, כלומר הייתם שולפים 150 כדורים אדומים.

באופן דומה, אם בכד יש 60 כדורים אדומים, אז ההסתברות להוציא מתוכו כדור אדום היא 60 מתוך 90, כלומר שני שליש. לכן בעולם מושלם, מתוך 300 כדורים ששלפתם, שני שליש מתוכם היו אדומים, כלומר הייתם שולפים 200 כדורים אדומים.

כאן אתם יכולים כבר להבין למה הנתון שנתתי לכם הוא שהוצאו 175 כדורים אדומים: 175 הוא הממוצע של 150 ו-200, כלומר אתם נמצאים באמצע הדרך בין שני העולמות המושלמים ההיפותטיים. או שלא?

בקשה שקולה לבקשה שלי היא לאמוד את ההסתברות להוציא כדור אדום מהכד: האם ההסתברות הזו היא חצי או שני שליש. אם לא הייתי אומר לכם מראש שההסתברות הזו חייבת להיות חצי או שני שליש, הייתם בוודאי אומרים כי ההסתברות היא 175 מתוך 300, כלומר 0.5833.  בסוף הפוסט הזה אסביר מדוע.

אחת הדרכים האפשריות לאמוד את מספר הכדורים האדומים בכד, או באופן שקול, לאמוד את ההסתברות להוציא כדור אדום מהכד היא להניח שאם ראינו משהו, זה אומר שההסתברות שנראה את אותו משהו גבוהה. העיקרון הזה נקרא עיקרון הנראות המירבית.[1]

נדגים את העיקרון בעזרת דוגמא יותר קיצונית. נניח ששלפתם 300 כדורים מהכד וכל הכדורים שנשלפו היו אדומים. אם בכד היו 45 כדורים אדומים, אז ההסתברות למאורע הזה היא חצי בחזקת 300. אם בכד היו 60 כדורים אדומים, ההסתברות לשלוף 300 כדורים אדומים היא שני שליש בחזקת 300. לא צריך לדעת הרבה מתמטיקה כדי לדעת שחצי בחזקת 300 הרבה יותר קטן משני שליש בחזקת 300. לכן, אם הוצאתם 300 כדורים אדומים, האפשרות הסבירה יותר היא שיש בכד 60 כדורים אדומים, וזה יהיה האומדן שלכם למספר הכדורים האדומים בכד.

ההמשך ברור: יש לחשב את ההסתברות שנשלפו 175 כדורים אדומים בהנחה שיש בכד 45 כדורים אדומים, ואת ההסתברות שנשלפו 175 כדורים אדומים בהנחה שיש בכד 60 כדורים אדומים. אם ההסתברות הראשונה יותר גבוהה, אז האומדן שלכם יהיה 45. אם ההסתברות השנייה תהיה יותר גבוהה, אז האומדן שלכם למספר הכדורים האדומים יהיה 60.

את שתי ההסתברויות האלה אפשר לחשב על ידי נוסחת ההתפלגות הבינומית. אל תטרחו לנסות. רוב הסיכויים הם שהמחשב שלכם לא יצליח לחשב את ההסתברויות האלה באופן מדוייק. אפשרות שניה היא לנסות לחשב את ההסתברויות האלה על ידי הקירוב הפואסוני להתפלגות הבינומית. הסברתי זאת בעבר כאן בבלוג, ראו למשל את הדוגמה הזו לחיזוי מספר הזוכים בלוטו.

אבל הדרך הכי קלה ומהירה היא לחשב את היחס בין שתי ההסתברויות[2]. מספרים שצריך לחשב בדרך, כמו 300 עצרת (מספר בן 615 ספרות) יצטמצמו, ולבסוף תקבלו כי ההסתברות להוציא 175 כדורים אדומים כאשר יש בכד 45 כדורים אדומים גדולה פי 1.4 מההסתברות להוציא  להוציא 175 כדורים אדומים כאשר יש בכד 60 כדורים אדומים. לכן האומדן שלי למספר הכדורים האדומים בכד הוא 45.

אומדן זה הוא אומדן נראות מירבית. הגעתי אליו על ידי כך שחישבתי את ההסתברות לקבל 175 כדורים אדומים בשני המצבים האפשריים, ובחרתי במצב שבו ההסתברות להוציא 175 כדורים אדומים הייתה גבוהה יותר.

מה היה קורה אילו לא אמרתי לכם כי מספר הכדורים בכד הוא בהכרח 45 או 60?

אין בעיה: פשוט צריך לחשב את כל ההסתברויות האפשריות לכל המקרים, החל מ-0 כדורים אדומים ועד ל-90 כדורים אדומים. בסך הכל מדובר כאן ב-91 חישובים, ואז למצוא את הערך שעבורו מתקבלת ההסתברות המקסימלית. אם תעשו את החישובים תמצאו כי הערך הזה הוא 59.

אבל יש דרך יותר קלה. אפשר לכתוב את ההסתברות להוציא 175 כדורים אדומים כפונקציה של ההסתברות להוציא כדור אדום אחד מהכד בשליפה בודדת. בעזרת קצת חדו”א אפשר למצוא את הערך שיביא את ההסתברות הזו למקסימום, וזה יהיה אמדן הנראות המירבית להסתברות להוציא כדור אדום מהכד.

שיטת האמידה על ידי נראות מקסימלית היא אחת משיטות האמידה החשובות ביותר בסטטיסטיקה. זאת מכיוון שלאמדי נראות מקסימלית יש תכונות מתמטיות העושות אותם לעדיפים במספר מובנים על פני אמדים אחרים. לכן השימוש בשיטה הזו נפוץ מאוד, וכל תכנה סטטיסטית מאפשרת את החישוב שלהם עבור כמעט כל מודל סטטיסטי.


הערות
  1. זו לא הגישה האפשרית היחידה. יש עוד גישות אפשריות, וייתכן ואדון בהן בפעם אחרת []
  2. אני מדלג על החישובים כי זה לא החלק החשוב כאן. למי שמעוניין, החישובים נמצאים כאן []