שוב פירסמתי סקר בטוויטר שמאחוריו מסתתרת רשימה על בעיה מעניינת בהסתברות – והפעם בעיית ימי ההולדת. הנה השאלה והתפלגות התוצאות:
בואו ננסה להבין ביחד מה קורה כאן. לשם כך, כרגיל, צריך להניח הנחות.
ההנחה הראשונה היא שאין תלות בין תאריכי הלידה של שני אנשים שונים. כלומר, אם אתם יודעים, למשל, שאני נולדתי ב-13 באוקטובר ((אל תשכחו לציין את זה בלוח השנה שלכם)), זה לא אומר לכם כלום על תאריך ההולדת של דונלד טראמפ, וגם לגבי תאריך ההולדת של כל אדם אחר. שימו לב שבהנחה הזו אנו מוציאם מהמשחק אפשרות של תאומים, שלישיות וכולי.
ההנחה השנייה היא שיש בשנה 365 ימים, ויש לכן 365 ימי הולדת אפשריים. ההנחה הזו מאפשרת לי להתעלם מכל האנשים המעצבנים שנולדו ב-29 לפברואר.
ההנחה השלישית היא שהתפלגות ימי ההולדת היא אחידה. פירוש הדבר הוא שהסיכוי כי אדם שבחרתם באופן מקרי נולד ב-1 בינואר שווה לסיכוי שהוא נולד ב-35 במאי, או בכל יום אחר בשנה, והסיכוי הזה הוא 1/365.
כרגיל, אפשר להתווכח על ההנחות, ולהחליף כל הנחה בהנחה אחרת, אבל זה רק יגרום לחישובים יותר מסובכים, בעוד שהתשובות המהותיות לא ישתנו. אם החישובים לא מדברים אליכם, דלגו עליהם, והתרכזו בעקרונות ובתוצאות. כדאי לכם להגיע עד הסוף, כי יש גם סרט.
ועכשיו נענה לשאלות. אם יש 23 אנשים באוטובוס, מה ההסתברות שלשניים מהם יש יום הולדת באותו יום?
אפשר לשאול את השאלה הזו בצורה אחרת: מה המספר המינימלי של אנשים באוטובוס כדי שההסתברות שלשניים מהם יש יום הולדת באותו יום תעלה על 50%?
קודם כל אסביר מדוע יש מספר אנשים שבו ההסתברות שלשניים מהם יש יום הולדת באותו יום עולה על 50%.
ובכן, אם יש באוטובוס רק בן אדם אחד (הנהג, אני מקווה), ההסתברות כי יש באוטובוס שני אנשים שנולדו באותו יום היא כמובן 0.
אם יש באוטובוס שני אנשים, ההסתברות ששניהם נולדו באותו יום היא 1/365. אסביר: ההסתברות ששניהם נולדו ב-1 בינואר היא 1/365 כפול 1/365. ההסתברות ששניהם נולדו ב-2 בינואר היא שוב 1/365 כפול 1/36, וכן הלאה. נחבר 1/365 כפול 1/365 לעצמו 365 פעמים, ונקבל 1/365.
אם יש באוטובוס 3 אנשים ההסתברות ששניים מהם נולדו באותו יום גבוהה יותר. ההסתברות שהנהג והנוסע הראשון נולדו באותו יום היא כאמור 1/365, אבל יש לקחת בחשבון גם את האפשרות שהנהג והנוסע השני נולדו באותו יום, וגם את האפשרות ששני הנוסעים נולדו באותו יום. התוצאה אמנם אינה חיבור פשוט של כל שלושת ההסתברויות ((כי יש חפיפה בין המאורעות)), אבל אני מקווה שברור כי היא גבוהה יותר.
אם נוסיף עוד נוסע ועוד נוסע ועוד נוסע ההסתברות שיש באוטובוס שני אנשים שנולדו באותו יום תלך ותגדל.
אם יהיו באוטובוס 366 איש ((זה אוטובוס ממש גדול)), ההסתברות שבאוטובוס יש שני אנשים שחולקים יום הולדת מגיעה ל-100%: במקרה הכי גרוע יש 365 אנשים שכל אחד נולד ביום אחר בשנה, ואז יום ההולדת של האדם ה-366 חייב להיות זהה ליום הולדת של אחד מהאחרים ((כי הנחנו שאין 29 בפברואר)). הטיעון הזה, אגב, מבוסס על טענה מתמטית המכונה “עקרון שובך היונים“.
ובכן, ההסתברות של המאורע שלנו מתחילה ב-0, גדלה ככל שנוספים אנשים לאוטובוס ומגיעה בסוף ל-100%. לכן חייבת להיות נקודה בה ההסתברות הזו תעבור את ה-50%. הנקודה הזו היא, באופן מפתיע, כאשר מספר האנשים באוטובוס מגיע ל-23. אני לא מתכוון לעבור כאן על כל החישוב, אבל יש ברשת מחשבון לחישוב ההסתברויות , שם גם יש הסבר כיצד ההסתברות מחושבת. 23 הוא מספר יחסית קטן של אנשים, והאינטואיציה של רוב בני האדם ((כן, כן, גם שלי)) אומרת להם כי זה מספר קטן מדי של אנשים, יחסית למספר ימי ההולדת האפשריים. מסיבה זו בעיית ימי ההולדת מכונה “פרדוקס ימי ההולדת“, למרות שאין כאן שום סתירה לוגית.
אם תביטו שוב בתוצאות הסקר, אתם עלולים לחשוב כי כמעט מחצית מהמשיבים (49%) ענו את התשובה הנכונה. אבל זה לא נכון. זו התשובה הנכונה לשאלה שדנתי בה עד עתה, אבל זו לא התשובה לשאלה ששאלתי.
אני שאלתי מה ההסתברות כי בין 22 הנוסעים האחרים יש אדם שחולק איתי יום הולדת. במילים אחרות, מה ההסתברות שיש באוטובוס עוד אדם שנולד ב-13 באוקטובר. התשובה לשאלה הזו היא בערך 5%. כדי שההסתברות שמישהו באוטובוס חולק איתי יום הולדת תהיה בערך 50%, צריכים להיות עליו 253 אנשים. החישוב כאן יותר פשוט מהחישוב של השאלה הקודמת, ולכן אסביר אותו במפורט. מי שלא מתעניין בחישובים יכול לדלג פיסקה.
ההסתברות כי הנוסע הראשון מבין 22 הנוסעים האחרים נולד ב-13 באוקטובר היא 1/365, ולכן ההסתברות כי לא נולד ב-13 באוקטובר היא 364/365. באופן דומה, ההסתברות כי הנוסע השני לא נולד ב-13 באוקטובר גם היא 364/365, וכך הלאה לכל שאר הנוסעים. בגלל אי התלות בין ימי ההולדת, ההסתברות כי אף אחד מבין 22 הנוסעים האחרים היא לכן המכפלה של 364/365 בעצמו 22 פעמים. זה יוצא 0.941. מכאן שההסתברות כי לפחות אחד מבין ה-22 נולד ב-13 באוקטובר היא 1-0.941=0.058, או, בקירוב טיפה גס, בערך 5%. שליש מהמשיבים לסקר בחרו את התשובה הנכונה. ((ומי שענה “אחר” בגלל שהתוצאה יותר קרובה ל-6% מאשר ל-5%, גם זה סבבה))
יש הרבה פולקלור מסביב לבעיית ימי ההולדת. בספר הקלאסי Lady Luck מספר המחבר, המתמטיקאי וורן וויבר, כי השתתף בארוחה עם מספר גנרלים בזמן מלחמת העולם השנייה. הוא סיפר להם על בעיית ימי ההולדת, וכצפוי, הטענה כי אם יש בחדר 23 אנשים אז הסיכוי ששניים מהם חולקים יום הולדת היא כ-50% לא תאמה את האינטואיציה של חלק מהנוכחים. מכיוון שבארוחה השתתפו 22 איש, הם החליטו להעמיד את הטענה למבחן: כל אחד מהמשתתפים אמר מהו יום הולדתו, ולא נמצאו שני סועדים עם יום הולדת משותף. אז התערבה בשיחה המלצרית שנכחה בחדר ואמרה “סלחו לי, אבל אני האדם ה-23 בחדר, ויום הולדתי הוא ה-17 במאי, כמו יום ההולדת של הגנרל היושב שם”.
מבין 45 הנשיאים של ארצות הברית, הנשיאים פולק והרדינג נולדו שניהם ב-2 בנובמבר. הנשיאים פילמור וטאפט מתו שניהם ב-8 במרץ, ושלושת הנשיאים אדמס, ג’פרסון ומונרו מתו ב-4 ביולי. אף נשיא לא חולק איתי יום הולדת.
ג’וני קארסון, המנחה ההמיתולוגי של ה-Tonight Show, התעמק גם הוא בבעיה. בשידור ב-6.2.1980 הוא סיפר לאורח שלו כי מספיק שיהיו 35-40 אנשים בחדר, כדי שיימצאו ביניהם שני אנשים שחולקים יום הולדת משותף. (אם יש בחדר 35 אנשים, ההסתברות היא כ-85%. כשיש 40 אנשים ההסתברות היא כמעט 90%). המרואיין לא השתכנב וקארסון החליט לערוך הדגמה. הוא שאל גברת מהקהל מה תאריך הלידה שלה, והיא ענתה שיום הולדתה הוא ב-9 לאוגוסט. התברר כי אין עוד אדם בקהל שזהו יום הולדתו. קארסון החליט לנסות שוב. הוא בחר מישהו אחר מהקהל, ויום הולדתו היה ה-9 באפריל. שוב התברר כי אין בקהל אדם נוסף שזהו יום הולדתו. קארסון המתוסכל ניסה שוב, הפעם עם יום ההולדת של עצמו, ה-23 באוקטובר. שוב לא היה בקהל אדם נוסף שזהו יום הולדתו. הפעם היו בקהל שני אנשים שחלקו עימו יום הולדת. ((תודה לגיל גרינגרוז ששהפנה את תשומת ליבי)) מי שהגיע עד לכאן כבר הבין כי קארסון חיפש תשובה לשאלה הלא נכונה. בקהל, אגב, היו כ-500 איש, מה ששמבטיח בודאות כי היו שם לפחות שני אנשים עם יום הולדת משותף. אתם מוזמנים לצפות בהקלטת השידור.
עניתי את התשובה הלא נכונה, אבל רגע אחרי שלחצתי שמתי לב שזו לא השאלה שהנחתי שאתה שואל. ההנחה שלי, כשניסיתי לחשב, היא שאפשר פשוט לחבר 22 מקרים של 1/365 וזו תהיה הסבירות (זה יוצא טיפה יותר מאשר 6%). האם לא נכון לחשב ככה? אני מניח שאם מחשבים כך צריך לחשב את חלקם של המקרים בהם יש עוד שניים, שלושה, או 22 אנשים עם אותו יום הולדת ולהחסיר אותם מהתוצאה הסופית, וזה מה שגורם לפער בין החישוב שלך לחישוב שלי — השאלה היא האם יש משהו עקרונית שגוי בדרך החישוב שלי.
כמו כן, אם אכן היו בקהל של קארסון 500 אנשים, מה הסיכוי ששלושה אנשים אקראיים לא יחלקו יום הולדת עם מישהו נוסף בקהל? או, במילים אחרות, אם לוקחים כ-500 אנשים, מה הסיכוי שלאף אחד מהם לא יהיה יום הולדת באחד משלושה תאריכים שנבחר אקראית?
דובי,
לשאלתך הראשונה, חיבור ההסתברויות אינו נכון, כי לא מדובר במאורעות זרים: ייתכן כי יהיה לי יום הולדת משותף גם עם האדם השני וגם עם האדם ה-17.
השאלה השניה היא שאלה טובה. אלה למעשה שתי שאלות, והן לא שקולות. השאלה הראשונה מתייחסת למצב בו בוחרים אדם מהקהל ובודקים אם יש עוד מישהו בקהל עם אותו תאריך יום הולדת. בשאלה השניה אתה בוחר תאריך, ובודק אם יש בקהל אנשים שזה יום ההולדת שלהם. כאן ייתכן כי אין בקהל אפילו אדם אחד עם יום הולדת בתאריך שבחרת.
אני מניח שאפשר לענות על שתי הששאלות בעזרת חישובים קומבינטוריים, אבל אני חייב להודות כי היכולות שלי בקומבינטוריקה הן בסיסיות ביותר. אפשרות אחרת היא לכתוב תכנית סימולציה שתיתן תשובה מקורבת כרצוננו לשאלות האלה. אולי אעשה את זה בשעות הפנאי ואז אדווח כאן על התוצאות.
דווקא נראה שלפי הוידאו לפחות אדם אחד חלק יום הולדת עם קרסון.
צפיתי שוב. אתה צודק. תיקנתי את הפוסט בהתאם. תודה!