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Missing Completely At Random

= There is no relationship between missingness and either observed or unobserved data.

= Examples:
= The patient decided to move to Hawaii
= “Missing by design”, e.g. rotating panel study

= Study is terminated at a common scheduled date before all subjects have complete
follow-up.
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MCAR essentials I—@ &

= The observed data can be thought of as a random sample of the complete data

= |n particular, complete cases can be regarded as a random sample from the target
population.

= All methods for analysis that yield valid inferences in the absence of missing data will
also yield valid inferences when the analysis is based on all available data

= Therefore, “Complete cases” analysis is valid, yet inefficient

= |t may be possible to check the validity MCAR under certain assumptions

Missing Not At Random

= The missingness depends on both observed and unobserved data

= Examples:
= |ndividuals who are heavier are less likely to report their weight

= Device sensitivity: if it can measure only values that are above S, anything below that
is missing

= |n RCT, subjects from the control group are more likely to withdraw from study
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MNAR essentials I—% &

= The missing data mechanism cannot be ignored when the goal is to make inferences
about the distribution of the complete data

= Any valid inferential method under MNAR requires specification of a model for the
missing data mechanism

Missing At Random

= The missingness depends on observed data but not on unobserved data

= Examples

= Those from a higher socioeconomic status may be less willing to provide salary
information (but we know their SES status)

= A study protocol requires that a subject be removed from the study as soon as the
value of an outcome variable falls outside of a certain range of values
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MAR essentials I—% &

Complete cases are a biased sample from the target population

= Consequently, an analysis restricted to the “completers” is not valid

= However, the conditional distribution of the missing values is the same as the
distribution of the completers data and the population data

= Therefore, the missing values can be validly “predicted” or “extrapolated” using the
observed data

Checking the missingness mechanism

= The assumption of MAR can be tested against the alternative hypothesis of MCAR,
under the assumptions that the data is not MNAR

= The assumption of MAR can be tested against the alternative hypothesis of MNAR only
when a specific MNAR model is assumed
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The Multiple Imputations principle
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either a standard normal or a t distribution
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lllustrative example
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Multiple imputations: m=4
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Ml results ]
Unadjusted ANCOVA
Group diff. -0.542 -0.194
(s.e.) (0.145) (0.117)
Age effect - 0.0242
(s.e) - (0.0029)
Jomplete Imp. 1 Imp.2 Imp.3 Imp. 43 MI
cases (m=100)
Group diff.  -0.051 -0.179  -0.303  -0.328  -0.275 -0.211
(s.e.) (0.167) (0.121) (0.117) (0.123) (0.113) (0.147)
Age effect  0.0318 0.0308 0.0303 0.0285 0.0250  0.0293
(s.e.) (0.0051) (0.0039) (0.0039) (0.0042) (0.0029) (0.0045)
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MI basic principles I—% &

The Ml paradigm is Bayesian in its nature

Observed data depend on parameter(s) B

Distribution of B is estimated from the observed data

Missing data is sampled/simulated by using the B estimate
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Limitations/considerations

= Bayesian analysis is predicated on the assumption that the proposed models are
correct.

= Therefore, model checking is an essential feature of sound statistical analysis

= Even Bayesians should avoid using statistical methods that can be expected to perform
poorly when considered within a framework of repeated sampling
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= Regression-based imputation — useful when only one variable needs imputation

= |mputation under a joint model for the observed data and the missing data — various
Monte Carlo methods

= |mputation using fully conditional specification - MICE

= |ntuition: apply the univariate regression approach to each of the variables that has
missing values

= Application: a series of regression models are run whereby each variable with
missing data is modeled conditional upon the other variables in the data
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MICE process

= |mpute all missing values using simple imputations
= Cycle across variables with missing values
= Select a variable to be imputed and reset the imputed values to missing

= Use an appropriate regression model to impute the missing value based on all other
data

= Re-iterate until convergence
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Variables with missing data: age, sex, number of lesions at baseline
(Nol)

1. Single impute all missing data

2. Reset imputed age values to missing and re-impute using linear
regression model and imputed values of sex and NolL

3. Reset imputed sex values to missing and re-impute using logistic
regression and imputed values of age and NolL

4. Reset imputed Nol values to missing and re-impute using Poisson
regression and imputed values of age and sex

5. Reiterate steps 2-4 until convergence, to get an imputed data
set

Repeat the whole process to get more imputed data sets
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