Statistical analysis of stability data

The simplified story

- Look at the drug product for a long period of time
- Measure the level of an interesting parameter at several time points
- See if it changes over time

Simple linear model

- Y = the measured parameter (e.g. %assay, pH)
- T = time (typically measure in months)
- Model: $Y = \beta_0 + \beta_1 \cdot T + \varepsilon$

Analysis of more that one batch

- Usually, data from one batch is not enough in most cases we need 3 batches
- We can analyze each batch separately, but then we must consider the worst case scenario
- Also, the variability in a single batch is large compared to the variability in a larger sample

The complicated story

- Receive stability data from a few batches
- Determine if the data from the various batches can be pooled together
- If yes, analyze the pooled data

Model for testing poolability

- Y = the measured parameter (e.g. %assay, pH)
- T = time (typically measure in months)
- B = the batch
- B*T = batch and time interaction
- Model: $Y = \beta_0 + \beta_1 \cdot T + \beta_2 \cdot B + \beta_3 \cdot T \cdot B + \varepsilon$

How to test for poolability

- If interaction term is significant, data cannot be pooled
- If interaction term is not significant...
 - If batch is significant, then it must remain in the model
 - Otherwise, data can be pooled completely

Each of these tests should be conducted using a significance level of 0.25 to compensate for the expected low power of the design due to the relatively limited sample size in a typical formal stability study

Specification checking

- For an attribute known to decrease with time, the lower one-sided 95 percent confidence limit should be compared to the acceptance criterion
- For an attribute known to increase with time, the upper one-sided 95 percent confidence limit should be compared to the acceptance criterion
- For an attribute that can either increase or decrease, or whose direction of change is not known, two-sided 95 percent confidence limits should be calculated and compared to the upper and lower acceptance criteria

Guidelines and references

- EP Chapter 5.3
- USPC General Chapter <111>
- Statistics in the Pharmaceutical Industry: Ch. 3