

Outline

- What is pharmacogenomics
- Biological background
- Hardy-Weinberg Equilibrium and Linkage Disequilibrium
- Types of genetic studies
- GWA studies design and analysis
- Candidate Gene studies design and analysis

4

Some applications of PGx

- Utilize genetic markers of efficacy for patient stratification
- Identify non-responders to investigational drug or SOC
- Identify markers of adverse drug reaction; modify dosing

6

Improve benefit-risk ratio

Alleles and expression					
 Genotype – Combination of alleles Homozygous gene – both alleles are the same Heterozygous gene – alleles are different Phenotype- expression of genotype A dominant allele is almost always averaged 					
 A recessive allele is expressed only if there are two copies of that allele 					
11					

Hardy-Weinberg Equilibrium

- A theoretical description of the relationship between genotype and allele frequencies
- HWE denotes independence of the alleles at a single site between two homologous chromosomes

- Let p be the frequency of the dominant allele A and q and let be the frequency of the recessive allele a (p+q=1).
- The expected genotype frequencies are:

$$p_{AA} = p^2$$

 $p_{Aa} = 2pq = 2p(1-p)$
 $p_{aa} = q^2 = (1-p)^2$

13

Candidate polymorphism studies Types of genetics studies Consider polymorphism(s) within a gene Studies to investigate genotype-trait association within a population of unrelated individuals: There is an a priori hypothesis about functionality Candidate polymorphism studies Primary hypothesis: the variable site under investigation is functional. Candidate gene studies That is, the given SNP (or set of SNPS) influence the Fine mapping studies disease trait directly Gnome-wide association studies (GWAS) 16 15

Linkage Disequ	ıilibrium					
	Expected allele distributions under	independence				
	Site 2					
	B b					
A Site 1	$n_{11} = N p_A p_B \qquad n_{12} = N p_A p_b$	$n_{1.} = N p_A$				
a	$n_{21} = N p_a p_B \qquad n_{22} = N p_a p_b$	$n_{2.} = N p_a$				
	$n_{.1} = Np_B$ $n_{.2} = Np_b$	N = 2n				
Observed allele distributions under LD						
	Site 2					
	B b					
A Site 1	$n_{11} = N(p_A p_B + D)$ $n_{12} = N(p_A p_B + D)$	$p_b - D)$ $n_{1.}$				
a	$n_{21} = N(p_a p_B - D)$ $n_{22} = N(p_a)$	$p_b + D)$ $n_{2.}$				
	n.1 n.2	N = 2n				
20						

Trait-genotype	relationship

4 111		
6.1121 at 11	18.1	12123
	2000	
	1	
a proved	6	1 3

- Ultimate goal: identify SNP or set of SNPs that predict the phenotypic trait
- In pharmaceutical industry the interesting trait is response to treatment

		SNP (G)		
Treatment (T)	Response (Y)	AA	Aa	aa
Active	Yes	N 111	N 112	n 113
	Undetermined	n 121	n 122	n 123
	No	N 131	n 132	n 133
Placebo	Yes	n 211	n 212	n 213
	Undetermined	n 221	n ₂₂₂	n 223
	No	n 231	n 232	n 233

22

Typical GWAS study approach	V		
Data QC			
 Remove SNPs with >5% missing data and or nonrandom missingness 			
Remove SNPs with low Minor Allele Frequency			
Remove SNPs that depart from HWE			
Remove individuals with high percent of missing data			
 Run logistic regression model for each of the SNPs 			
Identify top SNPs with significant drug and SNP intera	ction		
 Beware of multiple testing 			

Try to model interactions between top SNPs (later)

24

Identify SNPs for candidate gene study

 Common approaches to SNP analysis
 Classical tests and measures of association (Chi-square, Fisher's exact test, Cochran-Armitage, etc.)

- Logistic regression
 - Look for significant T*G interaction
 - Allows for introduction of additional covariates
- Log linear model
 - Look for conditional independence of T and Y given G
- Bayesian testing: assume the parameter of the multinomial count data comes from a Dirichlet distribution
 - Works also when some cells has low/zero counts
 - Are you ready to pay the price?

23

