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Method development

� Exploratory process

� Early development phase – check possibility of developing 
the method

� Optimization phase – once development of method is 
possible, fine tuning of method’s parameters is needed for 
efficient implementation 

� Examples of parameters: temperature, incubation time, 
type of equipment, etc.

� Statistical support is needed at the optimization phase

� Main statistical tool is DOE

� Usually, a series of controlled experiments is needed
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Qualification and validation

� Qualification and validation are two steps in testing the 
performance of a (bio)analytical procedure/method and 
ensuring its quality

� Qualification: A documented testing that demonstrates 
with a high degree of assurance that a specific process will 
meet its pre-determined acceptance criteria

� Validation: A documented testing, performed under highly 
controlled conditions, which demonstrates a process 
consistently produces a result meeting pre-determined 
acceptance criteria
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What is the difference?

� Key difference: whether or not the process under review 
operates under 'highly controlled' conditions 

� Qualification can be viewed a less extensive form of 
validation

� Less parameters are checked

� Acceptation criteria are less strict

� In some cases, qualification is part of the method 
development process. Method can be modified if 
necessary.
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The role of the statistician

� To provide, in cooperation with the development team, the 
experimental design for the qualification/validation.

� To develop and write the statistical methods section or a 
statistical analysis plan as required for the 
qualification/validation.

� To analyze and report the qualification/validation results 
according to the predefined statistical methods.

� To review and approve the qualification/validation report.
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Selectivity/Specificity

� Selectivity/Specificity - the ability of an analytical method to 
differentiate and quantify the analyte in the presence of 
other components in the sample

� This includes:

� Identification – ensuring the identity of the analyte

� Purity – ensuring an accurate statement of the content of impurities 
of an analyte, i.e. related substances test, heavy metals, residual 
solvents content, etc.

� Assay (content or potency) - providing an exact result which allows 
an accurate statement on the content or potency of the analyte in a 
sample
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Accuracy

� The accuracy of a (bio)analytical procedure expresses the 
closeness of agreement between the value which is 
accepted either as a conventional true value or an accepted 
reference value and the value found

� This is sometimes termed as “trueness”

� Accuracy is related to systematic error or bias

10

Precision

� The precision of a (bio)analytical procedure expresses the 
closeness of agreement between a series of measurements 
obtained from multiple sampling of the same homogeneous 
sample under the prescribed conditions

� Precision is related to noise or variation
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Accuracy vs. precision 

Accuracy=Bias Precision=Variance
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Levels of precision

� Repeatability expresses the precision under the same 
operating conditions over a short interval of time.

� Intermediate precision expresses within-laboratories 
variations: different days, different analysts, different 
equipment, etc.

� Reproducibility expresses the precision between 
laboratories.
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Other quality parameters

� Detection limit - the lowest amount of analyte in a sample 
which can be detected but not necessarily quantified as an 
exact value

� Quantification limit - the lowest amount of analyte in a 
sample which can be quantitatively determined with 
suitable precision and accuracy

� Linearity – the ability (within a given range) to obtain test 
results which are directly proportional to the concentration 
(amount) of analyte in the sample
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Other quality parameters

� Range - the interval between the upper and lower 
concentration (amounts) of analyte in the sample (including 
these concentrations) for which it has been demonstrated 
that the analytical procedure has a suitable level of 
precision, accuracy and linearity

� Robustness – measuring the method’s capacity to remain 
unaffected by small, but deliberate variations in method 
parameters
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Precision and accuracy estimation

"The way they do it at Chemistry “:

1. Measure accuracy and repeatability using 6 runs by 
the same analyst on the same day – report CV.

2. Measure reproducibility using another 6 runs by 
another analyst on another day – report 
"Reproducibility Difference "
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"The way they do it" advantage

� No experimental design

� No modeling

� No complex calculations

� Simple reporting
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"The way they do it" problems

� Biological methods are more complicated to 
implement, therefore the numbers of possible runs in 
a single day is limited

� Variation of biological methods is generally higher 
compared to chemical methods 

� Measuring intermediate precision is not enabled

� No statistical sense
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"The way they do it" Experimental Design



© Yossi Levy 2011

19

Example - Biological data
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The way we would do it, at 
Statistics – Mixed Model!

σσσ ,, cb

ijjiij cbY εµ +++=

Signal =
random 

error

random 

effects +
fixed 

parameter +

•Independence

•Normal distribution

•Zero mean deviations

Assumptions:

•STDs:
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Why use Mixed Models?

� Classical statistics assumes that observations are 
independent and identically distributed (iid)

� Often, data have a clustered structure

� When applied to clustered data, iid assumption may lead to 
false results

� Mixed Effects Model treats clustered data assumes two 
sources of variation, within cluster and between clusters

� This is the typical situation in biological data, when, 
observations are of the same biological category but 
individuals differ    

22

Basic principles

� Two types of coefficients are distinguished in the mixed 
mode 

� population-averaged: same meaning as in classical 
statistics

� Cluster/subject-specific: random; estimated as posteriori 
means
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Formal modeling

0),cov(

),0(~

),0(~

=

++=

εγ

ε

γ

εγβ

RN

GN

ZXY

RZZGVYV +′==)(

The matrices G and R are covariance matrices for the 
random effects and the random errors, respectively . As 
a result:

The trick is to find a good model for G

24

SAS syntax

data example1;

input day y @@;

cards;

1 0.768 1 0.601 1 0.887

2 0.460 2 0.398 2 0.519

;

run;

proc mixed method=reml covtest cl;

class day;

model y= / solution cl;

random day;

run;
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Example - SAS output

Repeatability Between Day 

precision

Accuracy
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Results that make biological sense
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Results that make statistical sense

µ

σ

22 σσ +D

????0.2259Between Days 
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95% confidence intervalEstimateParameter
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DOE to measure intermediate precisions

4 Days, 2 Analysts     or 2 Days, 4 Analysts
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Reporting intermediate precisions
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Example 2

Accuracy

Repeatability Between Day 
precision

Between Analyst 
precision



© Yossi Levy 2011

31

Relative Standard Deviation

� Let X1,….Xn~N(µ,σ2) iid. Define 

� McKay derived the approximate distribution of  
RSD in 1932:

� This can be used to obtain CI for CV, but would 
one extend that to Mixed Models?

XsRSD

CV

/

/

=

= µσ
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Jackknife

� Idea: systematically re-computing the statistic estimate 
leaving out one or more observations at a time from the 
sample set

� From this new set of replicates of the statistic, an estimate 
for the bias and an estimate for the variance of the statistic 
can be calculated

� If we delete one observation at a time we get n sub-
samples

� Then we calculate estimate CV out of the n subsamples, 
and obtain an estimate for it variation

� This estimate can be used to obtain a CI 
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Fieller’s theorem application

� Same trick as in Fieller’s theorem – look at 

XCVsU ⋅−=

� Then
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� The obtained CI is 
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Delta method

� Let Tn be a MLE of a (multidimensional) parameter θ.

� It is known that Tn is asymptotically Normally distributed:

� Consider a function h(θ). We can expand its according to 
Taylor :

( ) ),0( Σ→− NTn
D

n θ

)()'()()( θθθ −⋅∇+≈ nn ThhTh
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Delta method
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Application of Delta method

� In our framework:
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� This leads to the following CI:
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Parametric bootstrap
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Parametric bootstrap algorithm

� Estimate model parameters

� Simulate N new datasets based on estimated parameters

� Estimate parameter under interests for each of the 
simulated datasets to get a sample of N simulated 
estimates

� Use 2.5% and 97.5% sample quartiles as a CI

Note: for RSD, we use the 95% quartile as an upper 

confidence limit, since the lower confidence limit is zero.
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Which method should we use?

� We should consider

� Distributional assumptions – are they correct? Are they 
needed?

� Robustness

� Ease of computation

� “back calculation” – Can we calculate sample sizes?


