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Topics to be covered

� What is a clinical trial

� Design considerations and sample size calculations

� Randomization

� Data monitoring – DMC and BDRM

� The ITT principle

� Analysis of incomplete data

� Adaptive clinical trial designs
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What is a clinical trial

� A prospective study

� Comparing the effect and value of an intervention

� Against a control

� In human beings
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Clinical Development

� Phase I 

� Safety

� Pharmacology

� Phase II

� Extended safety

� Efficacy – proof of concept

� Phase III

� Confirmation of clinical efficacy

� Long term safety

� Phase IV

� Post marketing
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Clinical trials “must have”

� Everything should be pre-defined

� Research questions

� Study population

� Study design

� Assessment methods

� Statistical analysis

� Randomization

� Blinding
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The life cycle of a clinical trial

� Design 

� Conduct 

� Analysis

A good statistician can make significant 

contributions to each of these phases!
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Most common study types

� Superiority study:

� Non-inferiority study:

� Bio-equivalence study:

CTCT HH µµµµ >= :: 10

∆<−∆≥− TCTC HH µµµµ :: 10

CTCT HH µµµµ =≠ :: 10
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The "Introduction to Statistics story"
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The real life story

� Selection of clinical endpoint

� Study population - inclusion/exclusion criteria

� Assumptions on clinical conditions and therapeutic 
effect

� Drop out of subjects during the study

� How the data will be analyzed at the end of the 
study?

All of these consideration will affect the study’s 

sample size and power
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Sample size calculation in practice

� It is theoretically possible to develop formulae for the 
sample size needed, or to find them in the literature

� However, in many cases, it would be too complicated

� Moreover, it will probably not take into account population 
heterogeneity, correlation to baseline variable, drop-outs, 
etc.

� A practical way to evaluate sample size and power is to use 
simulation 
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Real life example

� Different patients may have different rate of clinical events 
– what is the rate distribution?

� You probably want to select “active patients” to the trial –
for example, patients who had at least one or two clinical 
events during the year prior to enrollment. How do you 
account for that?
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Simple example

� Endpoint – number of clinical events during a year

� Endpoint distribution – Poisson

� H0: λT= λP       vs. H1: λT< λP 

� Normal approximation is not going to work

� Non-parametric test has low power

� There is probably a statistical test and a formula for the 
sample size out there for comparing the means of two 
independent Poisson Random variables

� Poisson regression will make more sense 
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Simulation of power/sample size

1. Generate a data set assuming H1 is true for a given 
sample size N and given study parameters, and take into 
account all considerations

2. Analyze the data set using the statistical method you 
intend to use at the end of the trial. H0 may be accepted or 
rejected

3. Repeat steps 1 and 2 a large number of times

4. The estimated power is the proportion of simulated data 
sets for which the null hypothesis is rejected
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Randomization

� Randomization is an allocation of subjects to treatment 
regimens using a random element

� It is an essential component of clinical trials

� It promotes comparability of the treatment groups with 
respect to known as well as unknown covariates 

� It reduces the chance for bias in the evaluation of the 
treatment effect

� It can also serve as a basis for a randomization approach to 
inference
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Types of bias

� Selection bias

� Observer bias

� Imbalance in a covariate
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Complete randomization

� “flip a coin” for every subject

� Totally unpredictable – eliminates selection bias

� Risk of undesirable imbalance in the number of subjects 
allocated to each arm => potential loss of power
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Permuted block randomization

� A sequence of blocks that contain the treatment 
assignments in desired ratios

� The treatment assignments are randomly permuted within 
the blocks

� Provides a good balance in treatment assignments, when 
most of the blocks are filled

� Improves the efficiency of an interim analysis

� What would be the block size?

18

Variations of permuted block 
randomization

� Permuted block design with a variable block size

� Constrained block randomization

� Stratified permuted block randomization
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Example

� Suppose you want to randomize N patients 
into 2 arms (Drug / Placebo), in a 1:1 ratio

� There are 3 categorical stratification factors

� Age: Under or over 40

� Sex

� Smoking status

� Goal: to balance the distribution of each of the stratification 
factors between the treatment group

� The 3 factors define 8 strata

� If N is relatively small, stratified permuted block 
randomization may fail to balance

20

Dynamic randomization

� May be applied when there are too many important 
prognostic factors for stratification to handle

� Used to provide a balance in selected covariates

� The treatment assignment of a subject depends on the 
subject’s vector of covariates and thus is determined only 
when the subject arrives
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Pocock and Simon Biased Coin 
Algorithm

� Draw in advance a random list of N numbers from U(0,1). 

� When a new subject is to be randomized to the trial, 
calculate the total imbalance caused by assigning him to 
drug arm, or to placebo arm. 

� The preferable arm for the current subject is the one that 
minimizes the total imbalance. 

� If both arms are equally preferable, assign Drug / Placebo 
with probability 0.5. Otherwise, assign the preferable 
treatment to the subject with probability 0.5<p<1. 

Pocock SJ, Simon R. Biometrics 1975;31(1) 103–115.
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Total imbalance

� For each stratification factor:

1. Look at the level of the new subject. Count the current 
number of subjects in the same level assigned to drug / 
placebo.

2. Calculate the difference between the number of 
subjects assigned to drug and placebo, if the new 
subject is assigned to “drug”.

3. Calculate the difference between the number of 
subjects assigned to drug and placebo, if the new 
subject is assigned to “placebo”.

� The total imbalance if the new subject is assigned to 
drug/placebo is the sum of differences for each 
stratification factor.
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New patient: Age=45, Male, Smoker
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Total imbalance example
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Step 1: Current Count

0

2

4

6

8

10

12

Age>40 Male Smoker

Drug
Placebo

559PlaceboPlacebo

3611DrugDrug

SmokerSmokerMaleMaleAge>40Age>40

Total imbalance example



© Yossi Levy 2011

25

Step 2: Count if new="Drug"
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Total imbalance example

Action: Randomize patient to “placebo” with probability 0.8
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Pocock and Simon Biased Coin 
Algorithm

� The basic algorithm can be modified to deal with: 

� Different balance between arms (ratio of x:y)

� More than 2 arms 

� Non-binary stratification factors (such as country) 

� Different weight to each stratification factor
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Data monitoring during the trial

� BDRM – Blinded Data Review Meeting

� DMC – Data Monitoring Committee

28

The ITT principle

� Fisher developed the theory of randomization when 
experimenting with plants

� However, unlike rows of plants, people sometimes

� Fail to comply with randomly assigned therapies

� Fail to comply with study protocol

� Do not complete the trial

� Any difference between groups that arises after 
randomization could be due to consequences of the 
randomized treatment assignment

� Adjusting the analysis of treatment effect by post-
randomization group differences could introduce bias
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Intention-to-Treat Analysis

Includes all randomized patients in the groups to 

which they were randomly assigned, regardless of 

their adherence with the entry criteria, regardless 

of the treatment they actually received, and 

regardless of subsequent withdrawal from 

treatment or deviation from the protocol

(Lloyd) Fisher et al., 1990
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ITT key points

� Use every subject who was randomized according to 
randomized treatment assignment

� Ignore noncompliance, protocol deviations, withdrawal, and 
anything that happens after randomization

� As randomized, so analyzed

� The ITT analysis holds the randomization as of principal 
importance

� Deviation from the original randomized groups can 
contaminate the treatment comparison
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Compliance with Treatment

� Even subjects who did not comply with their assigned 
treatment should be included in ITT analysis

� Statistical reasons

� Compliance or noncompliance occurs after 
randomization

� Attempting to account for noncompliance by excluding 
noncompliant subjects can bias the treatment evaluation

� Clinical reasons

� In clinical practice, some patients are not fully compliant

� Compliant subjects usually have better outcomes than 
noncompliant subjects, regardless of treatment

32

How to deal with missing data?

� Optimal study design and execution

� Statistical models that handle incomplete follow-up data

� Imputation

� Extreme case analysis

� Sensitivity analysis
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� MCAR - missing completely at random

� Neither observed nor unobserved outcomes are 
related to (explain) missingness

� MAR - missing at random

� Observed outcomes and/or baseline covariates are 
related to missingness, but unobserved outcomes are 
not

� MNAR - missing not at random

� Unobserved outcomes are related to missingness

� Also known as not missing at random (NMAR) and 
non-ignorable (NI)

Types of Missing Data

34

Examples in Clinical Trials

From perspective of analysis of an efficacy 
outcome…

� Missingness caused by dropout due to patient 
moving to Hawaii is likely MCAR

� Missingness caused by dropout due to lack of 
efficacy is likely MAR if observe data up to the 
point of dropout but may be MNAR if don’t, i.e. 
dropout is explained by unobserved but not 
observed data

� Missingness caused by dropout due to AE 
depends on relationship of AE to efficacy.  If AE is 
related to PK levels that are also related to 
efficacy, then missingness may be MAR or MNAR
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Implications for Analysis

� Maximum likelihood methods are valid (at least consistent) 
for MAR missingness

� Important that all covariates and observed outcomes 
related to missingness are in the model, else analysis is 
not valid

� Suggests repeated measures with ML or REML 
estimation as a good method for clinical trial analysis

� Methods that are not maximum likelihood require 
imputation

36

Implications for Analysis (cont)

� LOCF as an imputation method with ANCOVA is only 
valid under the assumption that patients outcomes would 
not have changed further had they remained in the trial 
(note that this is an stronger statement than assuming 
MCAR missingness).
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What to do when have MNAR?

� Need to make an assumption about the effect of treatment 
in the unobserved data 

� pattern mixture models, selection models, and pattern 
set models are examples of well known frameworks to 
implement this by relating observed to unobserved 
values

� Since in general we do not know the relationship, the 
suggested method is sensitivity analysis where the analysis 
result is examined under a range of assumptions about the 
effect of treatment in the unobserved data

38

How to perform sensitivity 
analysis? One sensible solution:

Concept based on (unpublished? JSM 2006) proposal 
of Jie Zhang and Liansheng Zhu for binary data:

1. Subset the missing data according to MCAR, MAR, 
and MNAR.  This helps avoid the problem of analysis 
results depending too much on assumptions and the 
sensitivity analysis being too broad.

2. Choose a model for imputing the missing data for 
each case.  MAR and MCAR can be based on the 
observed data.  MNAR missing data should be 
imputed using a distribution where you can vary the 
parameter(s) that specify the treatment effect.
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sensitivity analysis - One sensible 
solution

3. For each value of the parameters examined, perform 
multiple imputation.  Combine the analysis result from 
each imputation set as follows:

where TD is the total variability associated with     .

4. Form a test statistic to evaluate θ using TD and        and
then evaluate using the t distribution with degree of 
freedom estimated as outlined in Little and Rubin 2002.
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sensitivity analysis - One sensible 
solution

4. Create a grid of the results across values of 
the parameter(s) that specifies the treatment 
effect in the MNAR group indicating where 
the p-value is <0.05.

5. If the p-value is <0.05 across a reasonable 
range of alternatives, then the primary 
analysis result can be considered robust 
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Example: Linear Model with 
Repeated Measurements

Step 1

� Reasons for discontinuation/missing data need to be classified as 
MCAR or MAR versus MNAR

MCAR or MAR

� Adverse event

� Meeting pre-defined withdrawal criteria

MNAR

� Lost to follow up

� Disease exacerbation

� Unwillingness to continue

42

Example: Linear Model with 
Repeated Measurements (2)

Step 2

� Build models for each visit using only observed data

where yj is the change from baseline in FEV1 at the jth visit.

Step 3

� Impute the MCAR and MAR missing data using these models as 
follows

where zi is a randomly drawn standard normal deviate.

� Any intermittent missing values will also be imputed using this 
regression method.

11110
... −−+++= jjj yyy βββ
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Example: Linear Model with 
Repeated Measurements (3)

Step 4

� Using only the MCAR, MAR, and completers data including the imputed 
values, perform repeated measures analysis to estimate β’s for the 
primary analysis model written here for each subject.

Step 5

� Impute MNAR missing data using the model from Step 4 as follows:

where δ∈[0,1] and represents the amount of treatment benefit 
preserved in the unobserved MNAR data, 0 being none and 1 being all.

ββ itrtii
Xxy += 1

εσββδ ˆˆˆ 1 iitrtiimputedi
zXxy ++=
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Example: Linear Model with 
Repeated Measurements (4)

Step 6

� Estimate βtrt using all data.

Step 7

� Iterate Steps 3-6 for each δ 100 times. Then calculate a 
single estimate and p-value for each δ using standard 
multiple imputation techniques (available in SAS Proc 
MIANALYZE).  A plot of p-value by δ can then be drawn to 
help visualize the result.
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Example: Linear Model with 
Repeated Measurements (5)

Sensitivity Analysis
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Example: Poisson Regression

Step 1 – same as previous example

� Reasons for discontinuation/missing data need to be 
classified as MCAR or MAR versus MNAR

MCAR or MAR

� Adverse event

� Meeting pre-defined withdrawal criteria

MNAR

� Lost to follow up

� Disease exacerbation

� Unwillingness to continue
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Example: Poisson Regression (2)

Step 2

� Build “overdispersed” Poisson model using only observed 
data

where β1 represents the treatment effect and is written 
separately simply for explanatory reasons.
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Example: Poisson Regression (3)

Step 3

� Impute the MCAR and MAR missing data using this model as follows:

1. For each patient who drops out from the study, use their baseline 
covariates and treatment to estimate their annual event rate, λi.  Also, 
calculate τ’=percent of study unobserved.  For example, in a one-year 
study, a patient dropping out after 6 months has a value of 0.5.
Calculate their rate for the unobserved portion of the study, λi un = λiτi’.

2. We use the negative binomial distribution to simulate a random 
“overdispersed” Poisson value since we can set the variance to be the 
mean x overdispersion for the negative binomial distribution and get 
integer values.  In other words, using the negative binomial 
distribution, we get values that look like overdispersed Poisson.  In 
order to generate a random negative binomial value since you cannot 
get directly from SAS, you can use the following procedure. 
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Example: Poisson Regression (4)

3. First generate a random gamma distributed value, g, with 
from a gamma distribution with parameters 

where σ2 is the overdispersion parameter from the 
Poisson regression and for the following parameterization 
of the gamma distribution:

4. Then, generate the imputed number of events for the 
unobserved period by randomly drawing a Poisson with 
mean g.  Then add this value to the number of events 
experienced by the patient during the observed period to 
get yi imputed.
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Example: Poisson Regression (5)

Step 4

� Using only the MCAR, MAR, and completers data including the imputed 
values, perform Poisson regression analysis to estimate β’s for the 
primary analysis model.

Step 5

� Impute MNAR missing data using the β’s from Step 4 and generate a 
random “overdispersed” Poisson value for the unobserved portion as in 
Step 3 with the exception that now for the missing portion 

where δ ∈[0,1] and represents the amount of treatment benefit 
preserved in the unobserved MNAR data, 0 being none and 1 being all.  
Finally, add the imputed count to the observed count for the new total 
count as in Step 3.
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Example: Poisson Regression (6)

Step 6 – same as previous example

� Estimate βtrt using all data.

Step 7 – same as previous example

� Iterate Steps 3-6 for each δ 100 times. Then calculate a 
single estimate and p-value for each δ using standard 
multiple imputation techniques (available in SAS Proc 
MIANALYZE).  A plot of p-value by δ can then be drawn to 
help visualize the result.
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Recommendation

� At a minimum, reports of confirmatory clinical trials should 
contain discussion of the impact of missing data

� If there is concern about the validity of the primary analysis 
result in particular, a sensitivity analysis should be 
performed to evaluate the robustness of the result
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Adaptive clinical trial design

Adaptive design is defined as

� A multistage study design

� That uses accumulating data

� To decide how to modify aspects of the study

� Without undermining the validity and integrity of the trial

54

The adaptive design principle
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Types of adaptations

� Early stopping for efficacy or futility

� Blinded sample size re-estimation

� Response adaptive randomization

� Seamless phase II/III design

� Unblinded sample size re-estimation

� Enrich subpopulation

� Change in choice of test statistic

� Change in primary hypothesis/endpoint

56

Adaptive does not mean “flexible”
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Advantages

� Potential modification are approved up front by regulatory 
agencies

� There is no need to file protocol amendments

� Logistics can be planned in advance

� Credibility of results is maintained, especially with the DMS 
as a firewall

58

Disadvantages

� Rigid design lack flexibility to respond to unexpected 
developments during long term trial

� Sponsors must be blinded. Responsibility to implement 
changes falls to the DMC, who may be “uncomfortable”
implementing the rules as written

� institutional review boards (“Helsinki committee”) may find it 
more difficult to agree to amore complex protocol. Some 
protocol adaptations may need to be included in patient 
informed consent form 
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Seamless adaptive designs

60

Traditional vs. Seamless
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Seamless development pros

62

Seamless development cons
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Statistical advantages

64

Statistical difficulties
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The closed testing principle

66

Closed testing example
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Closed test based methods for p-value 
combination

68

BK method



© Yossi Levy 2011

69

P-value combination

70

TSE method
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Example (Jennison &Turnbull, 2006)

72

The results
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Application of BK method

74

Application of TSE method
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Design issues


