

Pharmacogenomics

Yossi Levy

Central Dogma of Molecular Biology

\square

- Genome - contains all biological information
- Biological information is encoded in DNA
- DNA is divided to discrete units called Genes
- Genes are packed into Chromosomes
- DNA is made of four bases: A, G, C and T

Alleles and expression

- Each gene is represented by two copies, called Alleles
- Genotype - Combination of alleles
- Homozygous gene - both alleles are the same
- Heterozygous gene - alleles are different
- Phenotype- expression of genotype
- A dominant allele is almost always expressed
- A recessive allele is expressed only if there are two copies of that allele
- Some expressed traits are attributed to variation in DNA sequence
- When two individuals display different phenotypes in the same trait, they have two different alleles in the same gene.
- That gene is therefore said to be polymorphic.

The Human Genome

- 46 chromosomes - 23 pairs
- 2 meters of DNA
- 3 billion DNA bases
- 25000 genes
- 10 million SNPs

- SNP - Single Nucleotide Polymorphism
- Most common type of genetic variation
- Each SNP represent a difference in a single DNA base
- The SNP in the picture is CT or AC or AG or GT they are all the same
- SNP can have 3 possible values: AA, Aa or aa

Types of genetics studies

Studies to investigate genotype-trait association within a population of unrelated individuals:

- Candidate polymorphism studies
- Candidate gene studies
- Fine mapping studies
- Gnome-wide association studies (GWAS)

Candidate polymorphism studies

謀部

- Consider polymorphism(s) within a gene
- There is an a priori hypothesis about functionality
- Primary hypothesis: the variable site under investigation is functional.
- That is, the given SNP (or set of SNPS) influence the disease trait directly

Candidate gene studies

- Consider multiple SNPs within a gene
- SNPs are not assumed to be functional
- However, the selected SNPs may be associated to a functional SNP within the gene
- This association is called Linkage Disequilibrium
- Set to identify with a high level of accuracy the location of a disease-causing variant

Gnome Wide Association Studies

- Similar to candidate gene approach
- Aim to identify association between SNPs and trait
- Less hypothesis driven
- Involves the characterization of a much larger number of SNPs

Hardy-Weinberg Equillbrium

- A theoretical description of the relationship between genotype and allele frequencies
- HWE denotes independence of the alleles at a single site between two homologous chromosomes
- Let p be the frequency of the dominant allele A and q and let be the frequency of the recessive allele $a(p+q=1)$.
- The expected genotype frequencies are:

$$
\begin{aligned}
& p_{A A}=p^{2} \\
& p_{A a}=2 p q=2 p(1-p) \\
& p_{a a}=q^{2}=(1-p)^{2}
\end{aligned}
$$

Testing HWE

	Homolog 2				
				A	
Homolog 1	A	n_{11}	n_{12}	$\mathrm{n}_{1 .}$	
	a	n_{21}	n_{12}	$\mathrm{n}_{2 .}$	
		$\mathrm{n}_{\cdot 1}$	n_{2}	n	

- n_{12} and n_{21} are not observed. Only $\mathrm{n}^{*}{ }_{12}=\mathrm{n}_{12}+\mathrm{n}_{21}$ is known
- p_{A} is estimated by $\left(2 n_{11}+n_{12}\right)^{2} / 2 n$
- Using the estimate for p_{A} we can calculate the expected counts $\mathrm{E}_{11}, \mathrm{E}^{\star}{ }_{12}$ and E_{22} corresponding to $\mathrm{n}_{11}, \mathrm{n}^{*}{ }_{12}$ and n_{22} and construct a goodness of fit Chi-square test
- Another option is using Fisher's Exact test

Genotype	AA	AC	CC
Count $\left(n_{i}\right)$	48	291	724
Expected $\left(O_{i}\right)$	35.22	316.55	711.22

$p_{A}=\frac{2 \cdot 48+291}{2 \cdot 1063}=0.182 \longleftrightarrow$ MAF - Minor Allele Frequency
$O_{A A}=1063 \cdot 0.182^{2}=35.22$
$O_{A C}=1063 \cdot 2 \cdot 0.182 \cdot(1-0.182)=316.55$
$O_{C C}=1063 \cdot(1-0.182)^{2}=711.22$
$\chi^{2}=\frac{(48-35.22)^{2}}{35.22}+\ldots=6.927>3.84=\chi_{1,0.05}^{2}$

HWE implications

- HWE implies constant alleles frequencies over generations
- HWE is violated in the presence of population admixture - a situation in which mating occurs between two populations for which the allele frequencies differ
- HWE is violated in the presence of population stratification - combination of populations in which breeding occurs within but not between subpopulations
- HWE is violated when mating occurs between relatives

Deviation from HWE

- Check if population admixture or stratification is present
- Approaches: covariates, PCA, MDS
- May indicate genotyping error

Linkage Disequilibrium

- Recall that in candidate gene studies and GWAS, studied SNPs may not be functional
- However, it is hoped that they are associated with the trait under consideration
- LD: an association in the alleles present at each of two sites present on a genome

Expected allele distributions under independence

		B	Site 2	
		B		
		$n_{11}=N p_{A} p_{B}$	$n_{12}=N p_{A} p_{b}$	$n_{1 .}=N p_{A}$
Site 1				
	a	$n_{21}=N p_{a} p_{B}$	$n_{22}=N p_{a} p_{b}$	$n_{2 .}=N p_{a}$
		$n_{.1}=N p_{B}$	$n_{.2}=N p_{b}$	$N=2 n$

Observed allele distributions under LD

		B	Site 2
		b	
	A	$n_{11}=N\left(p_{A} p_{B}+D\right)$	$n_{12}=N\left(p_{A} p_{b}-D\right)$
Site 1		$n_{21}=N\left(p_{a} p_{B}-D\right)$	$n_{22}=N\left(p_{a} p_{b}+D\right)$
	a	n_{12}	$n_{2 .}$
		$n .2$	$N=2 n$

Estimation of D

$$
\hat{p}_{A}=n_{1 .} / N \quad \hat{p}_{B}=n_{.1} / N \quad \hat{p}_{A B}=? ? ?
$$

The number of individuals with A and B on the same allele is not observed

Estimation of $p_{A B}$

Genotype counts for two biallelic loci

$$
\begin{aligned}
& \log L\left(\theta \mid n_{11}, \ldots, n_{33}\right) \propto\left(2 n_{11}+n_{12}+n_{21}\right) \log p_{A B} \\
&+\left(2 n_{13}+n_{12}+n_{23}\right) \log p_{A b}+\left(2 n_{31}+n_{21}+n_{32}\right) \log p_{a B} \\
&+\left(2 n_{33}+n_{32}+n_{23}\right) \log p_{a b}+n_{22} \log \left(p_{A B} p_{a b}+p_{A b} p_{a B}\right)
\end{aligned}
$$

$p_{A b}=p_{A}-p_{A B}, p_{a B}=p_{B}-p_{A B}$ and $p_{a b}=1-p_{A}-p_{B}-p_{A B}$.

$$
D^{\prime}=\frac{|D|}{D_{\max }}
$$

$$
D_{\max }= \begin{cases}\min \left(p_{A} p_{b}, p_{a} p_{B}\right) & D>0 \\ \min \left(p_{A} p_{B}, p_{a} p_{b}\right) & D<0\end{cases}
$$

Another approach for LD

		B	Site 2	b
		A	$n_{11}=N\left(p_{A} p_{B}+D\right)$	$n_{12}=N\left(p_{A} p_{b}-D\right)$
Site 1		$n_{1 .}$		
	a	$n_{21}=N\left(p_{a} p_{B}-D\right)$	$n_{22}=N\left(p_{a} p_{b}+D\right)$	$n_{2 .}$
		$n_{.1}$	$n .2$	$N=2 n$

- Calculate "Pearson's chi-square statistic" for this table
- Define

$$
r^{2}=\chi^{2} / N
$$

- However, be aware that the " p -value" associated with the chi-square statistic is not valid

Relationship between r^{2} and D

$$
\begin{aligned}
& \chi^{2}=\sum_{i, j} \frac{\left(o_{i j}-E_{i j}\right)^{2}}{E_{i i}}=\sum_{i, j} \frac{(N \cdot D)^{2}}{E_{i i}}= \\
& =(N D)^{2} \cdot\left(\frac{1}{N p_{A} p_{B}}+\frac{1}{N p_{A} p_{b}}+\frac{1}{N p_{a} p_{B}}+\frac{1}{N p_{a} p_{b}}\right)= \\
& =\frac{N D^{2}}{p_{A} p_{B} p_{a} p_{b}} \\
& \quad r^{2}=\frac{\chi^{2}}{N}=\frac{D^{2}}{p_{A} p_{B} p_{a} p_{b}}
\end{aligned}
$$

LD graphical presentation

Trait-genotype relationship

- Ultimate goal: identify SNP or set of SNPs that predict the phenotypic trait
- In pharmaceutical industry - the interesting trait is response to treatment

Logistic regression

- Goal: relate explanatory variables x to a binary response variable y
- Let y^{*} be a continuous variable. It is not part of the data, only part of the model
- Model relationship between y^{*} and x using simple linear regression: $y^{*}=\beta_{0}+\beta_{1} x+\varepsilon$
- Model the relationship between y and y^{*} as a function of the sign of $y^{*}: y=1$ if $y^{*}>0,=0$ otherwise
- Assume that the errors ε follow a logistic distribution:

$$
F(t)=\frac{\exp (t)}{1+\exp (t)}
$$

Logistic regression

$$
\begin{aligned}
& P(y=1 \mid x)=P\left(y^{*}>0 \mid x\right)= \\
& =P\left(\beta_{0}+\beta_{1} x+\varepsilon>0 \mid x\right)= \\
& =P\left(\varepsilon>-\left(\beta_{0}+\beta_{1} x\right)\right) \\
& =P\left(\varepsilon<\beta_{0}+\beta_{1} x\right)= \\
& =\frac{\exp \left(\beta_{0}+\beta_{1} x\right)}{1+\exp \left(\beta_{0}+\beta_{1} x\right)} \\
& \Rightarrow \\
& \log \frac{P(y=1 \mid x)}{P(y=0 \mid x)}=\beta_{0}+\beta_{1} x
\end{aligned}
$$

$$
L(\theta)=\prod\left[P\left(y_{i}=1 \mid x_{i}\right)\right]^{y_{i}}\left[1-P\left(y_{i}=1 \mid x_{i}\right)\right]^{1-y_{i}}
$$

Denote $\pi_{\mathrm{i}}=P\left(y_{i}=1 \mid x_{i}\right)=\frac{\exp \left(\beta_{0}+\beta_{1} x\right)}{1+\exp \left(\beta_{0}+\beta_{1} x\right)}$

$$
l(\theta)=\sum\left(y_{i} \log \pi_{\mathrm{i}}+\left(1-y_{i}\right) \log \left(1-\pi_{\mathrm{i}}\right)\right)
$$

Comparing logistic models

- Let M and M ' be two logistic regression models

$$
\begin{aligned}
& \mathrm{M}: \log \frac{P\left(y=1 \mid x_{1}, \ldots, x_{p}\right)}{P\left(y=0 \mid x_{1}, \ldots, x_{p}\right)}=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p} x_{p} \\
& \text { M }: \log \frac{P\left(y=1 \mid x_{1}, \ldots, x_{p}, x_{p+1}, \ldots, x_{p^{\prime}}\right)}{P\left(y=0 \mid x_{1}, \ldots, x_{p}, x_{p+1}, \ldots, x_{p}\right)}=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p} x_{p}+\beta_{p+1} x_{p+1}+\ldots+\beta_{p} x_{p^{\prime}}
\end{aligned}
$$

- Let $|\mathrm{M}|$ and $|\mathrm{M}|$ be the dimensions of the models
- Let I* (M) be the maximum value of the log-likelihood function of model M
- Let the deviance of model M be $D(M)=-\left.2\right|^{*}(M)$
- Since $I^{*}(M) \leq l^{*}\left(M^{\prime}\right)$ then $D(M) \geq D\left(M^{\prime}\right)$
- Note that this result holds because the models are nested

Comparing logistic models

To test the hypothesis

$$
H_{0}: \beta_{p+1}=\ldots=\beta_{p^{\prime}}=0
$$

one can use the likelihood ration statistic:

$$
G^{2}\left(M \mid M^{\prime}\right)=D(M)-D\left(M^{\prime}\right) \xrightarrow{D} \chi_{p^{\prime}-p}^{2}
$$

Comparing logistic models
If the models are non nested, one can use:

$$
\begin{aligned}
& A I C(M)=D(M)+2|M| \\
& B I C(M)=D(M)+\log (n)|M|
\end{aligned}
$$

Data on ~100 subjects, ~250 SNPs

| | WEIGHT | HEIGHT\| | bsev | age | disdur | response | \|snp| | pat | drug | sex | snpid |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 77.0 | 168.0 | 2.0 | 43 | 3.5 | | GG | 378 | A | F | rs 10001 |
| 2 | 68.0 | 175.0 | 1.0 | 50 | 7.5 | | GG | 379 | P | M | rs 10001 |
| 3 | 50.0 | 159.0 | 1.5 | 46 | 7.6 | | GG | 380 | P | F | rs 10001 |
| 4 | 55.0 | 162.0 | 3.5 | 46 | 3.4 | | GG | 381 | A | F | rs 10001 |
| 5 | 55.0 | 163.0 | 2.0 | 24 | 3.4 | | GG | 383 | P | F | rs 10001 |
| 6 | 69.0 | 164.0 | 4.0 | 45 | 5.5 | | 1 GG | 384 | P | F | rs 10001 |
| 7 | 63.0 | 168.0 | 3.0 | 42 | 2.4 | | OG | 385 | A | F | rs 10001 |
| 8 | 62.0 | 165.0 | 1.5 | 26 | 1.2 | | 1 GG | 386 | P | M | rs 10001 |
| 9 | 67.0 | 174.0 | 1.0 | 27 | 0.7 | |) GG | 387 | P | F | rs 10001 |
| 10 | 47.0 | 154.0 | 2.0 | 28 | 3.7 | | 1 GG | 388 | P | F | rs 10001 |
| 11 | 72.0 | 173.0 | 3.5 | 27 | 3.8 | | OG | 389 | A | F | rs 10001 |
| 12 | 75.0 | 180.0 | 2.0 | 30 | 10.3 | | OG | 397 | A | F | rs 10001 |
| 13 | 70.0 | 171.0 | 3.0 | 28 | 3.3 | | 1 GG | 398 | P | M | rs 10001 |
| 14 | 71.0 | 171.0 | 2.5 | 35 | 5.3 | | GG | 399 | A | F | rs 10001 |
| 15 | 62.0 | 167.0 | 3.0 | 46 | 10.3 | | AG | 390 | P | F | rs 10001 |
| 16 | 69.0 | 178.0 | 3.0 | 29 | 1.2 | | 1 GG | 391 | A | M | rs 10001 |
| 17 | 90.0 | 163.0 | 2.0 | 24 | 1.2 | | 1 GG | 392 | P | F | rs 10001 |
| 18 | 87.0 | 162.0 | 4.0 | 37 | 2.3 | | 0 GG | 394 | P | F | rs 10001 |
| 19 | 85.0 | 175.0 | 2.5 | 26 | 0.4 | | 1 GG | 396 | P | F | rs 10001 |
| 20 | 104.0 | 163.0 | 5.0 | 33 | 5.3 | | 0 GG | 454 | P | F | rs 10001 |
| 21 | 95.0 | 169.0 | 2.0 | 32 | 6.6 | | 0 GG | 455 | A | F | rs 10001 |
| 22 | 63.0 | 166.0 | 5.0 | 42 | 2.6 | | 0 GG | 456 | A | F | rs 10001 |
| 23 | 79.0 | 168.0 | 5.0 | 45 | 1.3 | | 0 GG | 458 | P | F | rs 10001 |
| 24 | 60.6 | 164.0 | 5.0 | 37 | 10.8 | | 0 GG | 459 | P | F | rs 10001 |

Data for SNP rs10014

Table l ofanp by drug			
Controlling for resp=0			
anp	drug		
Frequency	A	P	Total
AC	6	2	8
CC	5	19	24
Total	11	21	32

Table 2 ofanp by drug			
Controlling for resp=1			
anp	drug		
Frequency	A	P	Total
AC	8	11	19
CC	29	19	48
Total	37	30	67

Model 1: SNP only

The only explanatory variable is SNP

Model FitStatistics		
Criterion	Intercept Only	Intercept and Covariates
AIC	126.598	128.473
SC	129.193	133.664
-2 Log L	124.598	124.473

Testing Clobal Null Hypothesis: BETA=0			
Test	Chi-Square	DF	Pr $>$ ChiSq
Likelihood Ratio	0.1243	1	0.7244
Score	0.1231	1	0.7257
Wald	0.1230	1	0.7258

Model 2: SNP and drug

Explanatory variables are SNP and drug

Model FitStatistics		
Criterion	Intercept Only	Intercept and Covariates
AIC	126.598	126.701
SC	129.193	134.486
$-2 \log \mathrm{~L}$	124.598	120.701

Testing Global Null Hypothesis: BETA=0			
Test	Chi-Square	DF	Pr $>$ ChiSq
Likelihood Ratio	3.8971	2	0.1425
Score	3.8424	2	0.1464
Wald	3.7550	2	0.1530

Model 3: add interaction and

 covariates

Explanatory variables are SNP, drug, SNP*drug and all covariates

Model FitStatistics						
Criterion	Intercept Only	Intercept and				
Covariates			$	$	AIC	126.598
:---	---:					
SC	129.193					
$-2 \log \mathrm{~L}$	124.598					

Testing Clobal Null Hypothesis: BETA=0			
Test	Chi-Square	DF	Pr $>$ ChiSq
Likelihood Ratio	21.6955	7	0.0029
Score	19.5362	7	0.0067
Wald	16.2817	7	0.0227

Type 3 Analysiz of Effects									
Effect	DF	Wald Chi-Square	Pr $>$ ChiSq	$	$	drug	1	0.0030	0.9564
:---	---:	---:	---:						
anp	1	0.0141	0.9056						
drugtap	1	10.1119	0.0015						
disdur	1	2.9776	0.0844						
bsev	1	3.1186	0.0774						
sex	1	1.6254	0.2023						
age	1	1.1926	0.2748						

Model 4: remove non-contributing covariates

Explanatory variables are SNP, drug, SNP*drug and bsev

Model FitStatistics		
Criterion	Intercept Only	Intercept and Covariates
AIC	126.598	117.937
SC	129.193	130.913
-2 Log L	124.598	107.937

Testing Clobal Null Hypotheris: BETA=0			
Test	Chi-Square	DF	Pr $>$ ChiSq
Likelihood Ratio	16.6608	4	0.0022
Score	15.3764	4	0.0040
Wald	13.4176	4	0.0094

Type 3 Anakris of Effects			
Effect	DF	Wald Chi-Square	$\mathrm{Pr}>$ ChiSq
drug	1	0.1534	0.6983
snp	1	0.0039	0.9499
drugtenp	1	8.6785	0.0032
bsev	1	3.1997	0.0737

Typical GWAS study approach

- Data QC
- Remove SNPs with $>5 \%$ missing data and or nonrandom missingness
- Remove SNPs with low Minor Allele Frequency
- Remove SNPs that depart from HWE
- Remove individuals with high percent of missing data
- Run logistic regression model for each of the SNPs
- Identify top SNPs with significant drug and SNP interaction
- Try to model interactions between top SNPs (later)
- Identify SNPs for candidate gene study

Log linear models

- Alternative approach to model association between categorical variables
- Instead of modeling the response probability, expected cell counts are modeled: $\log \left(m_{\mathrm{ij}}\right)=\ldots$.

		X_{2}		
		1	2	
X_{1}	1	n_{11}	n_{12}	$\mathrm{n}_{1 .}$
	2	n_{21}	n_{12}	$\mathrm{n}_{2 .}$
		$\mathrm{n}_{\cdot 1}$	n_{2}	n

Independence model

$\hat{m}_{i j}=\frac{n_{i \cdot .} n_{\cdot j}}{n}$
$\Rightarrow \log \hat{m}_{i j}=-\log n+\log n_{i .}+\log _{n . j}$
\Rightarrow Model :
$\log m_{i j}=u+u_{1(i)}+u_{2(j)} \quad i=1,2 j=1,2$
$u_{1(1)}+u_{1(2)}=0, \quad u_{2(1)}+u_{2(2)}=0$

General model for 2x2 table

Saturated model:

$$
\begin{aligned}
& \log m_{i j}=u+u_{1(i)}+u_{2(j)}+u_{12(i j)} \quad i=1,2 \quad j=1,2 \\
& u_{1(1)}+u_{1(2)}=0, \quad u_{2(1)}+u_{2(2)}=0 \\
& u_{12(1 j)}+u_{12(2 j)}=0 \text { for } j=1,2 \\
& u_{12(i 1)}+u_{12(i 2)}=0 \text { for } i=1,2
\end{aligned}
$$

Interpretation of parameters:
$u=\frac{1}{4} \sum_{i j} \log m_{i j} \quad$ The hypothesis of independence
$u_{1(1)}=\frac{1}{4} \log \frac{m_{11} m_{12}}{m_{21} m_{22}} \quad$ H0: $\begin{aligned} & 12(11)=0\end{aligned}$
$u_{12(11)}=\frac{1}{4} \log \frac{m_{11} m_{22}}{m_{21} m_{12}}$
etc.

Simple example

		SNP		
		BB (1)	Bb or bb (2)	
Response	No (1)	2037	958	2995
	Yes (2)	1757	218	1975
		3794	1176	4970

Analysis

"Usual" chi-square analysis

Table of divease by 3np							
divease					snp		
Frequency Expected	BB	Bb	Total				
	N	2037	958				
	2286.3	708.68	298				
	Y	1757	218				
	1507.7	467.32	1975				
Total	3794	1176	4970				

Statistic	DF	Value	Prob
Chi-Square	1	289.1536	$<.0001$
Likelihood Ratio Chi-Square	1	312.4785	<0001
Continuity Adj. Chi-Square	1	287.9950	$<.0001$
Mantel-Haenzel Chi-Square	1	289.0954	<0001
Phi Coefficient		-0.2412	
Contingency Coefficient		0.2345	
Cramer's V		-0.2412	

Log-linear analysis - saturated model

Analysis of Maximum Likelihood Estimates											
Parameter		Estimate	Standard Error	Chi- Square	Pr $>$ ChiSq	$	$	disease	N	0.4071	0.0204
:---	---:	---:	---:								
396.27	$<, 0001$										
anp	BB	0.7103	0.0204								
disease ${ }^{*}$ anp	N BB	-0.3331	0.0204								

Connection between log-linear

 models and logistic regression
4.

v

- Assuming independence:

$$
\begin{aligned}
& \log \frac{P\left(X_{1}=2 \mid X_{2}=j\right)}{P\left(X_{1}=1 \mid X_{2}=j\right)}=\log \frac{P\left(X_{1}=2, X_{2}=j\right)}{P\left(X_{1}=1, X_{2}=j\right)}= \\
& =\log \frac{p_{2 j}}{p_{1 j}}=\log \frac{m_{2 j}}{m_{1 j}}=\log m_{2 j}-\log m_{1 j}= \\
& =\left(u+u_{1(2)}+u_{2(j)}\right)-\left(u+u_{1(1)}+u_{2(j)}\right)= \\
& =u_{1(2)}-u_{1(1)}
\end{aligned}
$$

- This is the intercept only logistic regression

$$
\log \frac{P\left(X_{1}=2 \mid X_{2}\right)}{P\left(X_{1}=2 \mid X_{2}\right)}=\beta_{0}
$$

What about a saturated model?

- Similarly we receive

$$
\log \frac{P\left(X_{1}=2 \mid X_{2}=1\right)}{P\left(X_{1}=1 \mid X_{2}=1\right)}=\left(u_{1(2)}-u_{1(1)}\right)+\left(u_{12(21)}-u_{12(11)}\right)
$$

$$
\log \frac{P\left(X_{1}=2 \mid X_{2}=2\right)}{P\left(X_{1}=1 \mid X_{2}=2\right)}=\left(u_{1(2)}-u_{1(1)}\right)+\left(u_{12(22)}-u_{12(12)}\right)
$$

- Which is actually a logistic regression model, with intercept an a term that depends on X_{2}

$$
\log \frac{P\left(X_{1}=2 \mid X_{2}\right)}{P\left(X_{1}=2 \mid X_{2}\right)}=\beta_{0}+\beta_{1} X_{2}
$$

3-way table

Table 1 ofanpl by n (2					Table 2 ofanpl by n (2				
Controlling for cisease $=$ No					Controlling for cisease $=Y \mathrm{Ye}$				
anpl	mp2				anpl	3 np 2			
Frequency Expected	BB	Bb	bb	Total	Frequency Expected	BB	Bb	bb	Total
AA	$\begin{array}{r} 1167 \\ 1176.6 \end{array}$	$\begin{array}{r} 377 \\ 364.48 \end{array}$	$\begin{array}{r} 186 \\ 188.88 \end{array}$	1730	AA	$\begin{array}{r} 1509 \\ 1515.1 \end{array}$	$\begin{array}{r} 16 \\ 16.385 \end{array}$	$\begin{array}{r} 179 \\ 172.47 \end{array}$	1704
Aa	$\begin{array}{r} 763 \\ 760.39 \end{array}$	$\begin{array}{r} 225 \\ 235.55 \end{array}$	$\begin{array}{r} 130 \\ 122.07 \end{array}$	1118	Aa	$\begin{array}{r} 234 \\ 226.74 \end{array}$	$\begin{array}{r} 2 \\ 2.4519 \end{array}$	$\begin{array}{r} 19 \\ 25.81 \end{array}$	255
aa	$\begin{array}{r} 107 \\ 99.98 \end{array}$	$\begin{array}{r} 29 \\ 30.971 \end{array}$	$\begin{array}{r} 11 \\ 16.05 \end{array}$	147	aa	$\begin{array}{r} 14 \\ 15.116 \end{array}$	[1	1.7206	17
Total	2037	631	327	2995	Total	1757	19	200	1976

The saturated model [123]
$\log m_{u j k}=u+$

$$
\begin{aligned}
& +u_{1(i)}+u_{2(j)}+u_{3(k)}+ \\
& +u_{12(i j)}+u_{13(i k)}+u_{23(j k)}+ \\
& +u_{123(i j k)}
\end{aligned}
$$

Saturated model results

10

Anakris of Maximum Likelihood Estimates					
Parameter		Estimate	Standard Error	$\begin{array}{\|c\|} \mathrm{Chi-} \\ \text { Square } \end{array}$	$\mathrm{Pr}>\mathrm{ChiSq}^{\text {a }}$
divease	No	0.9930	0.0852	135.74	<,0001
anpl	AA	1.5119	0.0894	286.33	<,0001
	Aa	0.2643	0.1120	5.57	0.0183
divease ${ }^{\text {a mpl }}$	NoAA	-0.0029	0.0894	31.68	<,0001
	No Aa	0.3116	0.1120	7.74	0.0054
np2	BB	1.5597	0.0899	301.13	< 0001
	Bb	-1.0411	0.1487	49.01	< 0001
disease ${ }^{\text {anpp }}$ 2	No BB	-0.4999	0.0899	30.94	< 0001
	No Bb	0.8819	0.1487	35.17	<,0001
$3 \mathrm{mpl}{ }^{+3 \mathrm{mp}}$ 2	AA BB	0.0478	0.0940	0.26	0.6112
	AABb	-0.1897	0.1570	1.46	0.2268
	Aa BB	0.1510	0.1163	1.69	0.1940
	Aa Bb	-0.2399	0.2035	1.39	0.2383
disease ${ }^{+} \mathrm{mpl} 1^{+} \mathrm{np} 2$	NoAABB	-0.1187	0.0940	1.60	0.2066
	NoAABb	0.2077	0.1570	1.75	0.1858
	No Aa Bb	-0.2138	0.1163	3.38	0.0659
	NoAaBb	0.1749	0.2035	0.74	0.3901

Independence model [1][2][3]

$$
\log m_{u j k}=u+u_{1(i)}+u_{2(j)}+u_{3(k)}
$$

Maximum Likelihood Analysis of Variance			
Source	DF	Chi-Square	$\operatorname{Pr}>\mathrm{ChiSq}_{\mathrm{q}}$
disease	1	205.90	$<.0001$
snpl	2	2049.73	$<.0001$
snp2	2	3114.38	$<.0001$
Likelihood Ratio	12	1072.57	$<.0001$

Analysis of Maximum Likelihood Estimates					
Parameter		Estimate	Standard Error	Chi- Square	$\operatorname{Pr}>$ ChiSq
disease	No	0.2079	0.0145	205.90	$<.0001$
snpl	AA	1.3194	0.0298	1960.84	$<.0001$
	Aa	0.4027	0.0321	156.92	$<.0001$
snp2	BB	1.2461	0.0223	3112.04	$<.0001$
	Bb	-0.5181	0.0304	290.59	$<.0001$

Conditional independence model

[12][13]: conditional independence of X_{2} and X_{3} given X_{1} :

$$
\begin{aligned}
\log m_{u j k}= & u+ \\
& +u_{1(i)}+u_{2(j)}+u_{3(k)}+ \\
& +u_{12(i j)}+u_{13(i k)}
\end{aligned}
$$

Maximum Likelihood Anslysis of Variance			
Source	DF	Chi-Square	Pr $>$ ChiSq
disease	1	336.40	$<.0001$
anpl	2	1570.67	$<.0001$
snp2	2	2253.48	$<.0001$
disease ${ }^{*}$ anpl	2	409.65	$<.0001$
disease ${ }^{*}$ mnp2	2	212.25	$<.0001$
Likelihood Ratio	8	8.59	0.3778

Analysis of Maximum Likelihood Estimates					
Parameter		Estimate	Standard Error	ChiSquare	Pr > ChiSq
disease	No	1.0909	0.0595	336.40	<,0001
snpl	AA	1.5682	0.0457	1179.22	<,0001
	Aa	0.4001	0.0489	67.00	< 00001
snp2	BB	1.6169	0.0430	1415.12	<,0001
	Bb	-1.2326	0.0792	242.06	<,0001
disease ${ }^{*}$ anpl	No AA	-0.6008	0.0457	173.11	<,0001
	No Aa	0.1306	0.0489	7.14	0.0075
disease ${ }^{\text {E mpp }}$ 2	No BB	-0.6165	0.0430	205.71	< 0001
	No Bb	1.0610	0.0792	179.37	<,0001

One variable independent of two others [1][23]:
X 1 is independent of $\{\mathrm{X} 2, \mathrm{X} 3\}$

$$
\log m_{u j k}=u+u_{1(i)}+u_{2(j)}+u_{3(k)}+u_{23(j k)}
$$

No second order interaction [12][13][23]: no clear interpretation

$$
\begin{aligned}
\log m_{u j k}= & u+ \\
& +u_{1(i)}+u_{2(j)}+u_{3(k)}+ \\
& +u_{12(i j)}+u_{13(i k)}+u_{23(j k)}
\end{aligned}
$$

Association molecule

Bayesian approach

- The log-linear models fail when one (or more) of the cells in the contingency table has a frequency of zero
- A common fix for that is to replace the zero by 0.5 or by 1
- This approach is criticized since the data is perturbed
- A possible approach is the Bayesian approach
- The count data is multinomial, but what if we assume that the multinomial distribution parameters are also random variables?

Model setup

- Let D be the observed cell count for a 2×2 contingency table: $\mathrm{D}=\left\{\mathrm{n}_{11}, \mathrm{n}_{12}, \mathrm{n}_{21}, \mathrm{n}_{22}\right\}$
- The data D could have arisen under two hypotheses
- $H_{1}: X_{1}$ and X_{2} are independent
- $H_{2}: X_{1}$ and X_{2} are not independent
- Before seeing the observed data, we assume a priori that both hypotheses are equally likely:

$$
P\left(H_{1}\right)=P\left(H_{2}\right)=0.5
$$

Applying Bayes theorem

$P\left(H_{i} \mid D\right)=\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)}$
$\Rightarrow \frac{P\left(H_{2} \mid D\right)}{P\left(H_{1} \mid D\right)}=\frac{P\left(D \mid H_{2}\right) P\left(H_{2}\right)}{P\left(D \mid H_{1}\right) P\left(H_{1}\right)}=B_{21} \cdot \frac{P\left(H_{2}\right)}{P\left(H_{1}\right)}$
where B_{21} is the Bayes Factor
$B_{21}=\frac{P\left(D \mid H_{2}\right)}{P\left(D \mid H_{1}\right)}$

- The Bayes Factor represent the ratio of the posterior odds of H_{1} to its prior odds

Integrated likelihood

- $P\left(D \mid H_{i}\right)$ is the integrated likelihood of D, obtained by averaging the likelihood over all possible values of the parameters under H_{i}.
- What are the parameters?

Modeling the prior distribution

		SNP		
		BB (1)	Bb or bb (2)	
Response	No (1)	α	α	2α
	Yes (2)	α	α	2α
		2α	2α	4α

- Before seeing the data, we have no knowledge about which combination of categories are more or less likely
- The natural way to model the distribution of the multinomial parameters is the Dirichlet distribution - an extension of the Beta distribution, as it is conjugate the Multinomial distribution
$X=\left(X_{1}, \cdots, X_{k}\right) \sim \operatorname{Dirichlet}\left(\alpha_{1}, \cdots, \alpha_{k}\right) \sim \operatorname{Dirichlet}(\alpha):$
$f_{X_{1}, \cdots X_{k}}\left(x_{1}, \cdots, x_{k} \mid \alpha_{1}, \cdots, \alpha_{k}\right)=\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{k}\right)}{\Gamma\left(\alpha_{1}\right) \cdot \ldots \cdot \Gamma\left(\alpha_{k}\right)} \cdot x_{1}^{\alpha_{1}-1} \cdot \ldots \cdot x_{k}^{\alpha_{k}-1}$
if $\quad \beta \mid X \sim \operatorname{Multinomial}(X)$
and $\quad X \sim \operatorname{Dirichlet}(\alpha)$
then $X \mid \beta \sim \operatorname{Dirichlet}(\alpha+\beta)$

Assuming H_{2} - interaction

$$
\begin{aligned}
& P(D \mid p)=M \cdot p_{11}^{n_{11}} \cdot p_{12}^{n_{12}} \cdot p_{21}^{n_{21}} \cdot p_{22}^{n_{22}} \\
& P\left(p_{11}, p_{12}, p_{21}, p_{22} \mid \alpha\right)=\frac{\Gamma(4 \alpha)}{\Gamma(\alpha)^{4}} p_{11}^{\alpha-1} \cdot p_{12}^{\alpha-1} \cdot p_{21}^{\alpha-1} \cdot p_{22}^{\alpha-1} \\
& P\left(p_{11}, p_{12}, p_{21}, p_{22} \mid D, \alpha\right)= \\
& \frac{\Gamma(n+4 \alpha)}{\Gamma\left(n_{11}+\alpha\right) \cdot \Gamma\left(n_{12}+\alpha\right) \cdot \Gamma\left(n_{21}+\alpha\right) \cdot \Gamma\left(n_{22}+\alpha\right)} \cdot p_{11}^{n_{1}+\alpha-1} \cdot p_{12}^{n_{12}+\alpha-1} \cdot p_{21}^{n_{2}+\alpha-1} \cdot p_{22}^{n_{22}+\alpha-1}
\end{aligned}
$$

Integrated likelihood under H_{2}

$P\left(D \mid H_{2}\right)=$
$=\int p_{11}^{n_{11}} p_{12}^{n_{22}} p_{21}^{n_{21}} p_{22}^{n_{22}} P\left(p_{11}, p_{12}, p_{21}, p_{22} \mid \alpha\right) d p_{11} d p_{12} d p_{21} d p_{22}=$
$=\frac{\Gamma(n+4 \alpha)}{\Gamma\left(n_{11}+\alpha\right) \cdot \Gamma\left(n_{12}+\alpha\right) \cdot \Gamma\left(n_{21}+\alpha\right) \cdot \Gamma\left(n_{22}+\alpha\right)} \cdot \frac{\Gamma(\alpha)^{4}}{\Gamma(4 \alpha)}$

Assuming H_{1} - independence

- $\mathrm{P}_{\mathrm{ij}}=\mathrm{p}_{\mathrm{i} .} \cdot \mathrm{p}_{\mathrm{j},}$, therefore:

$$
P(D \mid p)=M \cdot p_{1 .}^{n_{1}} \cdot p_{2 .}^{n_{2}} \cdot p_{.1}^{n_{1}} \cdot p_{.2}^{n_{2}}
$$

- Assume independent Dirichlet prior for raw and columns marginal probabilities:

$$
\begin{aligned}
& P\left(p_{1 .}, p_{2 .} \mid \alpha\right)=\frac{\Gamma(4 \alpha)}{\Gamma(2 \alpha)^{2}} p_{1 .}^{2 \alpha-1} \cdot p_{2 .}^{2 \alpha-1} \\
& P\left(p_{.1}, p_{.2} \alpha\right)=\frac{\Gamma(4 \alpha)}{\Gamma(2 \alpha)^{2}} p_{.1}^{2 \alpha-1} \cdot p_{.2}^{2 \alpha-1}
\end{aligned}
$$

Integrated likelihood under H_{2}

$P\left(p_{1 .}, p_{2,}, p_{.1}, p_{.2} \mid D, \alpha\right)=$
$\frac{\Gamma(n+4 \alpha)}{\Gamma\left(n_{1 .}+2 \alpha\right) \Gamma\left(n_{2 .}+2 \alpha\right) \Gamma\left(n_{1}+2 \alpha\right) \Gamma\left(n_{2}+2 \alpha\right)} \cdot p_{1 .}^{n_{1}+2 \alpha-1} p_{2 .}^{n_{2}+2 \alpha-1} p_{.1}^{n_{1}+2 \alpha-1} p_{.2}^{n_{22}+2 \alpha-1}$

$$
\begin{aligned}
& P\left(D \mid H_{1}\right)= \\
& \frac{\Gamma(n+4 \alpha)}{\Gamma\left(n_{1 .}+2 \alpha\right) \cdot \Gamma\left(n_{2 .}+2 \alpha\right) \cdot \Gamma\left(n_{.1}+2 \alpha\right) \cdot \Gamma\left(n_{.2}+2 \alpha\right)} \cdot \frac{\Gamma(2 \alpha)^{4}}{\Gamma(4 \alpha)^{2}}
\end{aligned}
$$

