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Genome and DNA Jm :

Genome — contains all
biological information

Biological information is
encoded in DNA

DNA is divided to discrete units
called Genes

8 48 14

19 20 21 22

Genes are packed into ag %2% ésé R
Chromosomes B8 g2 22 % B8 M
DNA is made of four bases: A, s 11 &5 13 & &3
G,CandT 13 14 15 {6 {7 1;

X omom

Alleles and expression Jm

Each gene is represented by two copies, called Alleles
Genotype — Combination of alleles

Homozygous gene — both alleles are the same
Heterozygous gene — alleles are different
Phenotype- expression of genotype

A dominant allele is almost always expressed

A recessive allele is expressed only if there are two copies
of that allele
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Polymorphism Jm :

= Some expressed traits are attributed to variation in DNA
sequence

= When two individuals display different phenotypes in the
same trait, they have two different alleles in the same gene.

= That gene is therefore said to be polymorphic.

The Human Genome m

= 46 chromosomes — 23 pairs
2 meters of DNA
3 billion DNA bases

| ] -
25000 genes gori%in;mmm | ieinablod o B
11: Bproauctian r S oolEamnaole trom
= 10 million SNPs WWE’_@@%CKC'W

"Genome, Henderson! We're working on human genome!"

6
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= SNP - Single Nucleotide
Polymorphism

= Most common type of
genetic variation

= Each SNP represent a
difference in a single DNA
base

= The SNP in the picture is
CT or AC or AG or GT —
they are all the same

= SNP can have 3 possible
values: AA, Aa or aa

Types of genetics studies Jm

Studies to investigate genotype-trait association within a
population of unrelated individuals:

Candidate polymorphism studies
Candidate gene studies

Fine mapping studies
Gnome-wide association studies (GWAS)
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Candidate polymorphism studies

= Consider polymorphism(s) within a gene
= There is an a priori hypothesis about functionality

= Primary hypothesis: the variable site under investigation is
functional.

= That is, the given SNP (or set of SNPS) influence the
disease trait directly

Candidate gene studies Jm

= Consider multiple SNPs within a gene
= SNPs are not assumed to be functional

= However, the selected SNPs may be associated to a
functional SNP within the gene

= This association is called Linkage Disequilibrium

10
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Fine mapping studies L

= Set to identify with a high level of accuracy the location of a
disease-causing variant

1

Gnome Wide Association Studies T

= Similar to candidate gene approach
= Aim to identify association between SNPs and trait
= Less hypothesis driven

= Involves the characterization of a much larger number of
SNPs

12
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Hardy-Weinberg Equilibrium Jm ‘

= A theoretical description of the relationship between
genotype and allele frequencies

= HWE denotes independence of the alleles at a single site
between two homologous chromosomes

= Let p be the frequency of the dominant allele A and g and
let be the frequency of the recessive allele a (p+g=1).

= The expected genotype frequencies are:
Pas=D"
P =2pq=2p(1-p)
Puw=9"=01-p)

13

Testing HWE !m

Homolog 2
A a
n n n
Homolog 1 i 12 1.
a Ny Ny Ny
n. n, n

" Ny, and ny, are not observed. Only n*;,= N{5+n,, is known
= p, is estimated by (2n;,+ n’;,)/2n

= Using the estimate for p, we can calculate the expected
counts E,4, E’;, and E,, corresponding to n,;, n;, and n,,
and construct a goodness of fit Chi-square test

= Another option is using Fisher’s Exact test

14
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Genotype AA AC CC

Count (n) 48 291 724

Expected (O) | 35.22 | 316.55 711.22

2-48+291
Pa =5 1063
0,,=1063-0.182% =35.22
0, =1063-2-0.182-(1-0.182) =316.55
Opc =1063-(1-0.182)* =711.22
,  (48-3522)
3522

=0.182 =—=——= MAF — Minor Allele Frequency

+..=6.927>3.84= 22

15

HWE implications m

= HWE implies constant alleles frequencies over generations

= HWE is violated in the presence of population admixture
— a situation in which mating occurs between two
populations for which the allele frequencies differ

= HWE is violated in the presence of population
stratification — combination of populations in which
breeding occurs within but not between subpopulations

= HWE is violated when mating occurs between relatives

16
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Deviation from HWE

= Check if population admixture or stratification is present
= Approaches: covariates, PCA, MDS
= May indicate genotyping error

17

Linkage Disequilibrium M

= Recall that in candidate gene studies and GWAS, studied
SNPs may not be functional

= However, it is hoped that they are associated with the trait
under consideration

= LD: an association in the alleles present at each of two
sites present on a genome

18
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Linkage Disequilibrium

Expected allele distributions under independence

Site 2
B b
A ni1 = Npapp  nia = Npapy, | ni. = Npa
Site 1
a no = Npapp nao = Npapy ng. = Np,
ny1=Npg na= Npy N=2n

Observed allele distributions under LD

Site 2
B b

A ni1 = N(papp +D)  ni2 = N(papr — D) ni.
Site 1
a nat = N(papp — D) naz = N(paps + D) na.

n.1 n.a N =2n

19

Estimation of D

ﬁA:nl./N ﬁB:n.I/N ﬁAB:???

The number of individuals with A and B on the same
allele is not observed

Genotype: AaBb

/N

Haplotype pair: (AB,ab) Haplotype pair: (Ab,aB)

20
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Estimation of p,g _1

Genotype counts for two biallelic loci

Site 2
BB  Bb bb

0 = (PAB,PAb:DaB+ Pab)

AA 11 n12 ni13
Site 1
Aa ng1 N9y Nag

log L(0|n11, ... na3) x (2n11 + na2 +n21) logpap
+ (2n13 + nig + neg) log pap + (2131 + ngy + ng2) log pap
+ (2n33 + n32 + n23) log pap + no2 log(pABPab + PAbDaB)

PAb = PA — PAB, PaB = PB — PAp and pgy = 1 —pa —pp — pap.

21

Definition of D’

D

Dmax
min(p, p,, P, Pp) D>0
min(p,pg, P, Py) D <0

D=

D =

max

22
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Another approach for LD ‘1

Site 2
B b

A ni1 = N(papp + D)  ni2 = N(papr — D) ny.
Site 1

a na1 = N(paps — D) naz = N(paps + D) na.

7.1 na N=2n

= Calculate “Pearson’s chi-square statistic” for this table
= Define
r’ =y’ / N

= However, be aware that the “p-value” associated with
the chi-square statistic is not valid

23

Relationship between r? and D

7 =;(Oij_Eij)2 =Z(N'D)2 -

Eil E'l

iJ i

:(ND)Z-( r ., tr . 1 Jz
Np,py Np,p, Np.,py Np,p,

PaPpP,Py
2 2
) D
}" — Z —
N p.psgP.DP,
24
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LD graphical presentation

25
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Trait-genotype relationship |

= Ultimate goal: identify SNP
or set of SNPs that predict
the phenotypic trait

In pharmaceutical industry
— the interesting trait is
response to treatment

26
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"My physician prescribed a customized formulation
for me. Here's my DNA sequence.”
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Logistic regression Jm :

= Goal: relate explanatory variables x to a binary response
variable y

= Lety" be acontinuous variable. It is not part of the data,
only part of the model

= Model relationship between y"and x using simple linear
regression: y'=By+ Bix+¢€

= Model the relationship between y and y" as a function of
the sign of y': y=1 if y’>0, =0 otherwise

= Assume that the errors ¢ follow a logistic distribution:

_exp()
1+ exp(t)

27

Logistic regression m

P(y=11x)=P(y >01x)=

=P(B,+Bx+&>01x)=

=P(e>—(f, + Bx))

=P(e< f,+ fx) =
exp(f, + B,x)

- 1+exp(f, + S,x)
=

P(y=11x) _
OgP(y:OIx) =B+ Bx

28
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MLE for logistic regression _1

L) =] [[P(y, =1 x)F"[1-P(y, =11 x)]™"

exp(f, + S,x)
1+exp(B, + B,x)

Denote 7z, = P(y, =11 x,) =

10) = (v, log m, +(1-y,)log(1-7,))

29

Comparing logistic models M

= Let M and M’ be two logistic regression models

M:1 P(y=1lx,...,x,) B+ .
log———— =B +fx,+...+ B,x
gP(y:OI)cl ..... x,) o e
. P(y=1lx,...,x,,% ,,....X,.)
M':log ! P2t L= B+ BX A B, A B X+ B,

P(y=01lx,....x,,X,.55....X,)

= Let |M| and |M’| be the dimensions of the models

= Let I*(M) be the maximum value of the log-likelihood
function of model M

= Let the deviance of model M be D(M)=-2I*(M)
= Since I*(M)<I*(M’) then D(M)=D(M’)
= Note that this result holds because the models are nested

30
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Comparing logistic models -1

To test the hypothesis
Hy:B,.=..=8,=0

one can use the likelihood ration statistic:

G*MIM")Y=DM)-DM")——> y.._,

31

Comparing logistic models 7_

If the models are non nested, one can use:
AIC(M)=D(M)+2|M|
BIC(M) = D(M)+log(n)|M|

32
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Example

Data on ~100 subjects, ~250 SNPs
WEIGHT| HEIGHT | bsev | age |disdur| response  |snp| pat |drug|sex| snpid |
1 770 1680 20 43 35 0 GG 378 A F m10007
2 680 1750 10 50 75 1GG 379 P M rs10001
3 500 1590 15 46 76 1GG 380 P F rs10001
4 550 1620 35 46 34 0 GG 381 A F rs10001
g 550 1630 20 24 34 1 GG 383 P F rs10001
6 630 1640 40 45 55 1GG 384 P F 70007
7 630 1680 30 42 24 0 GG 38 A F rs10001
8 620 1650 15 2% 12 1GG 3P M rs10001
g 670 1740 10 27 07 0 GG 387 P F rs10001
10 470 1540 20 2 37 1 GG 388 P F rs10001
1l 720 1730 35 27 38 0 GG 385 A F 10007
12 750 1800 20 3 103 0 GG 37 A F rs10001
13 700 1710 30 2 133 1GG 3/ P M rs10001
14 710 1710 25 3% 53 0 GG 3% A F  rs10001
15 620 1670 30 46 103 0 AG 30 P F 70007
16 630 1780 30 28 12 1GG /A M rs10001
17 900 1630 20 24 12 1GG 382 P F rs10001
18 870 1620 40 37 23 0 GG 384 P F rs10001
19 850 1750 25 2% 04 1 GG 3% P F  rs10001
20 1040 1630 50 3 53 0 GG 454 P F rs70001
21 950 1690 20 2 66 0 GG 455 A F  rs10001
2 630 1660 50 42 26 0 GG 456 A F  rs10001
23 750 1680 50 45 13 0 GG 458 P F  rs10001
24 606 1640 50 37 108 0 GG 453 P F  rs10001
33

Data for SNP rs10014

Table 1 of mp by drug Table 2 of mp by drug
Controlling for resp=0 Controlling for resp=1
mp drug mp drug
Frequency A P| Total Frequency A F| Total
AC [ 2 B AC 8| 11| 19
CC 5| 19| 24 cc| 29| 19| 48
Total 1| 21| 32 Total 7 | &7

34
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Model 1: SNP only

The only explanatory variable is SNP

Model Fit Statisties
Intereept
Intercapt and
Criterion Omnly | Covariatez
AIC 126598 1218473
sC 129,193 133.664
-2LogL 124598 124473

Tezting Glohal Null Hypothesi=: BETA=0
Te=t Chi-Square | DF | Pr = ChiSg
Likelihood Rato 01243 1 0.7244
Score 01131 | 1 0.7257
Wald 01130 | 1 0.7258

35

Model 2: SNP and drug

Explanatory variables are SNP and drug

Model Fit Statistics
Tezting Clobal Null Hypothesiz: BETA=0
Intercept
Intercapt and Te=t Chi-Square | DF | Pr> ChiSq
Criterion Only | Covariates Lilelhood Ratio agem| 2 01425
AIC 126598 126701
Score ag4n| 2 0.1464
sC 120.193| 134486
Wald aTss0| 2 0.1530
2LleeL | 124598| 120701
36
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Model 3: add interaction and

covariates

Explanatory variables are SNP, drug, SNP*drug and all covariates

Model Fit Statistics Tezting Global Null Hypothesiz: BETA=0 Type 3 Analyziz of Effectz

Intercept hmﬁ% Test e lflasas Effect DF Chn—S:;:: Pr=ChiSq

I s P = Lislivod Raio | 2L&555| 7| 0009 | - . om0 osser
AlC 12658 118302 Scare 19862 7| 000eT) L 1 00141 09056
sC 129193| 139663 Al 16287] 7] M| [ugmp| 1] loaus|  osis
2Llogl | 124508 102502 disdur 1 29776 0.0844
bear 1| 3uss| oot

sex 1 16254 o208

age 1 11:6| o027

37

Model 4: remove non-contributing

covariates

Explanatory variables are SNP, drug, SNP*drug and bsev

Model FitStatistics Teszting Clobal Null Hypothesis: BETA=0 Type 3 Analy=iz of Effece=
Intercept | | Test ChiSquare | DF | Pr= ChiSq TWald
Intercept and T = eeaslG oo Effect DF | Chi-Square | Pr= ChiSq
iteri - ariates ilelihood 1] L
Crerion Ont| Cor drug 1 01534 0.6953
AIC 126598 117937| |Score 153764 | 4 0.0040
mp 1 0.0039 09499
§C 129193 | 130813 | |Wald 134176 | 4 0.0094
drugtmp | 1 B.6TBS 0.0032
2LogL | 124598 107937
heav 1 31997 0.0737

38
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Typical GWAS study approach m

= Data QC

= Remove SNPs with >5% missing data and or nonrandom
missingness

= Remove SNPs with low Minor Allele Frequency
= Remove SNPs that depart from HWE
= Remove individuals with high percent of missing data

Run logistic regression model for each of the SNPs

Identify top SNPs with significant drug and SNP interaction

Try to model interactions between top SNPs (later)

Identify SNPs for candidate gene study

39

Log linear models Jm ?

= Alternative approach to model association between
categorical variables

= Instead of modeling the response probability,
expected cell counts are modeled: log(m;)=....

X,
1 2

X, 1 Ny Nip ny

2 Ny Nip n,

n., no n

40
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Independence model -1

= logm,; =—logn+logn; +log,
= Model:
logm; =u+u,; +u,; i=12;=12

Uy H Uiy =0, Uy Tty =0

41

General model for 2x2 table |

Saturated model:
logmy =u+u; +uy )ty i=127=12
Uy F ity =0, Uy F ity =0
Uy T Uiy = Ofor j=1,2

Uppiyy Uiy =0 for i =1,2

Interpretation of parameters:

u= lzulogmv The hypothesis of independence
4= between X, and X, is equivalent to
1 .
”1(1) =_logw HO. U12(11)=0
My, My,
1 m,,m
Upany = ZIOgﬁ
21712
etc.
42
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Simple example _1

SNP
BB (1) |Bborbb (2)
Response | No(1) | 2037 958 2995
Yes (2) | 1757 218 1975
3794 1176 4970
43

“Usual” chi-square analysis

Table of dissase by p Statistic DF| Vale| Prob
— . ChiSquare 1289536 | <0001
Frequency Likelihond Ratin Chi-Square | 1| 3124785 | <0001
Expected S5/t (yloey Continuity Adj. Chi Square | 1| 2879950 | <0001
Bl I Dl B Mantel Haenezel ChiSquare | 1| 289.0954 | <0001

v| w7 2s| 19%m Phi Coefficient 02412

LUbfets Canti “oeficient 02348

Total ams| 17| 4om Cramer's V ey

Log-linear analysis — saturated model

Analy=iz of Maxinmm Likelihood Eztimates
Standard Chi-

Parameter Eztimate Error | Square | Pr > ChiSq
dizenze N 0407 0.0204 | 39627 =,0001
mp BB 0.7103 0.0204 | 1206.66 <0001

dizeaze*amp (NBBE | -03331 00204 | 26539 <0001
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Connection between log-linear |
models and logistic regression B

Assuming independence:

oo PX =21X, =) | P(X,=2.X, =) _
PX, =11X,=)) P(X,=LX,=))

. m, .
=10g&=logi=logm2j —logm,; =
1j 1j

= Uty t Uy ) — Uty iy ;) =
= Uy Uy,

This is the intercept only logistic regression

P(X,=21X,)

(0] =
Epx, —21x,) P

45

What about a saturated model?

Similarly we receive
P(X,=21X,=1)
SPx, =11X,=1)
P(X,=21X,=2)
P(X,=11X,=2)

Which is actually a logistic regression model, with intercept an a term

that depends on X,

o PX L =21X))

P(X, =2|X2) =ﬂ0+ﬂ1X2

46

(ul(z) U )+ (u12(21) —Upay )

(ul(Z) Uy )+ (u12(22) Uy )
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3-way table

Table 1 of mpl byapl Table 2 ofmpl byapl
Controlling for dizeaze=No Controlling for dizeaze=Yes
mpl =pl mpl =pl
Frequency Frequency

Expected EB Bb bk | Total Expected BB Bb bb | Total
Aa 1167 an 186| 1730 As | 1209 16 179 1704

11766 | 36448 188.88 15151 | 16385 | 17247
Aa 763 225 130] 1118 Aa M 2 19 285

760,30 | 23555 12207 226,74 24519 2581
aa 107 29 11| 147 aa 14 1 2 17

99.98( 30.971| 1605 15116 | 0.1635 | 1.7206
Total 2037 631 327| 299s Total 1757 19 00| 197

47

The saturated model [123]

logm,, =u+
+ ul(i) + uz(j) + u3(k) +
T UG T Uy TU3GH T

+ U3k

48
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Saturated model results
Analyziz of Maximum Likelihood Eztimates
Standard Chi-
Parameter Eztimate Error | Square | Pr > ChiSq
dizeaze No 0.9930 00852 | 13574 =,0001
mpl AL 15119 0.0894 | 28633 =.0001
Aa 02643 01120 £57 0.0183
dizeaze*anpl NoAA -0.5029 0.0894 LG8 =,0001
NoAa 03116 01120 774 0.0054
mpl BB 15597 0.0899 | 30113 =,0001
Bb -1.0411 0.1487 49.01 =,0001
dizeaze*mpl No BB -0.4999 0.0899 30.94 =,0001
NoBb 0.8819 0.1487 3517 =,0001
mpl #pl AABB 0.0478 0.0940 026 06112
AABL -0.1897 01570 146 02268
Aa BB 0.1510 01163 169 0.1940
AaBb -0.2399 02035 139 02383
dizeaze*mplimpl | No AABB -0.1187 0.0940 160 02066
NoAABb 02077 01570 175 0.1828
NoAaBB -0.2138 01163 338 00629
No AaBb 01749 02035 074 0.3901
49

Independence model [1][2][3]

log My = U+ UG+ Uy )+ U,

Maximum Likelihood Analysis of Variance Analysis of Maximum Likelihood Estimates
Source DF | Chi-Square | Pr= ChiSq Standard Chi-

Parameter Estimate Error | Square | Pre ChiSq

disease 1 205.90 <0001
disease No 0.2079 [ 0.0145| 20590 0001

snpl 2 2049.73 <0001
snpl AA | L3194 0.0298 | 1960.84 0001

snpl 2 31438 <0001
Aa 0.4027  0.0321] 156.92 0001

Likelihood Rati 12 107257 0001
ood hane | | ‘ = ‘ snp2 BB | 12461 0.0223( 3112.04 <0001
Bb [ -0.5181 0.0304| 290.59 =.0001

50
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Conditional independence model

[12][13]: conditional independence of X, and X, given X;:

logm,;, =u+

T Uiy T Wiy

51

Conditional independence model

Maximum Likelihood Analyziz of Variance Analyziz of Maxinum Likelihood Eztimates
Sourca DF | Chi-Square | Pr> ChiSq Standard|  Chi-
Parameter Eztimate Error| Square| Pr> ChiSq
dizease 1 33640 = 0001
dizenze No 1.0809 0.0585 ) 33640 <0001
anpl 2 1570.67 = 0001
anpl AA 1.5682 0.0457| 1179.22 <0001
anpl 2 2153.48 = 0001
Aa 0.4001 0.0488 | 67.00 <0001
dizeaze*mpl 2 40965 = 0001
anpl BB 16169 0.0430 | 141512 <0001
dizeaze*mpl 2 21225 = 0001
Bh -1.2316 0.0792| 24206 <0001

Likelihood Ratio | 8

3.59| 0.3m|
dizease*mpl | NoAA| -0.6008| 0.0487] 17311 <0001

No Aa 0.1306 0.0488 7.14 0.0075

dizeaze*mpl | No BB | -0.6165 0.0430 | 20571 = 0001

No Bb L0610 0.072) 17937 <0001

52
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Two other possible models -1

One variable independent of two others [1][23]:
X1 is independent of {X2 , X3}

log My = U+ UG Uy )+ Uy F Uy )
No second order interaction [12][13][23]: no clear interpretation

logm,; =u+
F Uy F Uy gy F U+

+ Uy T UG T U

53

Association molecule

/N /N

54
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Model hierarchy _1

[123]

Y1236k

[12][13][23)

(12][13) [13][23) (12][23)

=

| Ussiikg
[31122) [2][13] [11(23)

Ua(i)

u
23( k]
u Usagig .
12(ij)

(112]131

55

Bayesian approach

= The log-linear models fail when one (or more) of the cells in
the contingency table has a frequency of zero

= A common fix for that is to replace the zero by 0.5 or by 1
= This approach is criticized since the data is perturbed
= A possible approach is the Bayesian approach

= The count data is multinomial, but what if we assume that
the multinomial distribution parameters are also random
variables?

56
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Model setup Jm -

= Let D be the observed cell count for a 2x2 contingency

= The data D could have arisen under two hypotheses
= H,: X; and X, are independent
= H,: X; and X, are not independent

= Before seeing the observed data, we assume a priori
that both hypotheses are equally likely:

P(H)=P(H,)=0.5

57

Applying Bayes theorem .Jm

P(D|H,)P(H,)
P(D)
N P(H,|D) P(DIH,)P(H,) _ B P(H,)
P(H,ID) P(DIH)P(H,) ' P(H,)
where B, 1s the Bayes Factor
_P(DIH,)
~ P(DIH,)

P(H,1D)=

21

= The Bayes Factor represent the ratio of the posterior
odds of Hj to its prior odds

58
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Integrated likelihood Jm :

= P(DI|H) is the integrated likelihood of D, obtained by
averaging the likelihood over all possible values of the
parameters under H..

= What are the parameters?

59

Modeling the prior distribution M

SNP
BB (1) |Bborbb(2)
No (1) o o 20
Response
pon Yes (2) o o 20
20 20 da

= Before seeing the data, we have no knowledge about which
combination of categories are more or less likely

= The natural way to model the distribution of the multinomial
parameters is the Dirichlet distribution — an extension of the
Beta distribution, as it is conjugate the Multinomial
distribution

60
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The Dirichlet Distribution _1

X =(X,,---,X,) ~ Dirichlet(a,,---, &, ) ~ Dirichlet(c):
R
I'e,)-....T(e)

le,u-Xk(xl’”."xk |a1,”"ak):

if L1 X ~ Multinomial(X)
and X ~ Dirichlet(x)
then X | S ~ Dirichlet(a + f3)

61

Assuming H, - interaction

P(DIp)=M-pji'-pi3 - pii' - Py

F(46¥) a-1 a-1 a-1 a-1
P P "Pu "Pn

F(a)4 1

P(py1s Py Por» P 1) =

P(p,\s P1ys> Dots Py ID,a) =
C(n+4a) R
C(n,, +a)-T(n, +a)-T(n, +a)-T(n, +a) Pu

np+a-1

‘P2

np+a-1

*Pag

nyy+a—1

“Pn

62
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Integrated likelihood under H,

P(DIH,)=

nyq

_ I'n+4a) ' INCON
- I'n,+a)I'(n,+a)-I'(n,, +a)-I'(n,, +a) T'(4e)

63

= J. P11 P13 Pat Py P(Pyys Pias Pays Py | @)dpydp,dp, dp,, =

Assuming H, - independence Al

= Py=p;p, therefore:
P(DIp)y=M-p-py>-p} - p5

= Assume independent Dirichlet prior for raw and
columns marginal probabilities:

I'4ar) 2a-1 2a-1

P(p,,p, la)=
(p.p, ) F(2a)2 P 2.
IF'da) 51 204
P(p,p,a)= .
(P> pr) F(2a)2 P 2
64
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Integrated likelihood under H,

P(p,,p,,pi P, Do) =
I'n+4a)

I'(n, +2a)l'(n, +2a)'(n, +2a0)I'(n, +2a)

P(DIH,))=
I'(n+4a)

m +2a-1 _ny+2a-1 __n;+2a-1__nyp+2a-1
n! 1Z% ry 12
4
I'Ca)

65

T(n, +2a)-T(n, +2a)-T(n, +2a)-T(n, +2a) T(4a)’

© Yossi Levy 2011



