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Central Dogma of Molecular Biology
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Genome and DNA

� Genome – contains all 
biological information

� Biological information is 
encoded in DNA

� DNA is divided to discrete units 
called Genes

� Genes are packed into 
Chromosomes

� DNA is made of four bases: A, 
G, C and T
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Alleles and expression

� Each gene is represented by two copies, called Alleles

� Genotype – Combination of alleles

� Homozygous gene – both alleles are the same

� Heterozygous gene – alleles are different

� Phenotype- expression of genotype

� A dominant allele is almost always expressed

� A recessive allele is expressed only if there are two copies 
of that allele
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Polymorphism

� Some expressed traits are attributed to variation in DNA 
sequence

� When two individuals display different phenotypes in the 
same trait, they have two different alleles in the same gene.

� That gene is therefore said to be polymorphic.
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The Human Genome

� 46 chromosomes – 23 pairs

� 2 meters of DNA

� 3 billion DNA bases

� 25000 genes

� 10 million SNPs
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SNPs

� SNP - Single Nucleotide 
Polymorphism

� Most common type of 
genetic variation

� Each SNP represent a 
difference in a single DNA 
base

� The SNP in the picture is 
CT or AC or AG or GT –
they are all the same

� SNP can have 3 possible 
values: AA, Aa or aa
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Types of genetics studies 

Studies to investigate genotype-trait association within a 
population of unrelated individuals:

� Candidate polymorphism studies

� Candidate gene studies

� Fine mapping studies

� Gnome-wide association studies (GWAS)
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Candidate polymorphism studies

� Consider polymorphism(s) within a gene

� There is an a priori hypothesis about functionality

� Primary hypothesis: the variable site under investigation is 
functional. 

� That is, the given SNP (or set of SNPS) influence the 
disease trait directly
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Candidate gene studies

� Consider multiple SNPs within a gene

� SNPs are not assumed to be functional

� However, the selected SNPs may be associated to a 
functional SNP within the gene

� This association is called Linkage Disequilibrium



© Yossi Levy 2011

11

Fine mapping studies

� Set to identify with a high level of accuracy the location of a 
disease-causing variant

12

Gnome Wide Association Studies

� Similar to candidate gene approach

� Aim to identify association between SNPs and trait

� Less hypothesis driven

� Involves the characterization of a much larger number of 
SNPs
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Hardy-Weinberg Equilibrium

� A theoretical description of the relationship between 
genotype and allele frequencies

� HWE denotes independence of the alleles at a single site 
between two homologous chromosomes

� Let p be the frequency of the dominant allele A and q and 
let be the frequency of the recessive allele a (p+q=1).

� The expected genotype frequencies are:
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Testing HWE

nn.2n.1

n2.n12n21a

n1.n12n11A
Homolog 1

aA

Homolog 2

� n12 and n21 are not observed. Only n*
12= n12+n21 is known

� pA is estimated by (2n11+ n*
12)/2n

� Using the estimate for pA we can calculate the expected 
counts E11, E

*
12 and E22 corresponding to n11, n

*
12 and n22

and construct a goodness of fit Chi-square test

� Another option is using Fisher’s Exact test
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Example
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HWE implications

� HWE implies constant alleles frequencies over generations

� HWE is violated in the presence of population admixture
– a situation in which mating occurs between two 
populations for which the allele frequencies differ

� HWE is violated in the presence of population 
stratification – combination of populations in which 
breeding occurs within but not between subpopulations

� HWE is violated when mating occurs between relatives
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Deviation from HWE

� Check if population admixture or stratification is present

� Approaches: covariates, PCA, MDS

� May indicate genotyping error

18

Linkage Disequilibrium

� Recall that in candidate gene studies and GWAS, studied 
SNPs may not be functional

� However, it is hoped that they are associated with the trait 
under consideration

� LD: an association in the alleles present at each of two 
sites present on a genome
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Linkage Disequilibrium
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Estimation of D

???ˆ/ˆ/ˆ
1..1 === ABBA pNnpNnp

The number of individuals with A and B on the same 
allele is not observed
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Estimation of pAB
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Definition of D’
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Another approach for LD

� Calculate “Pearson’s chi-square statistic” for this table

� Define

� However, be aware that the “p-value” associated with 
the chi-square statistic is not valid

Nr
22 χ=
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Relationship between r2 and D
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LD graphical presentation
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Trait-genotype relationship

� Ultimate goal: identify SNP 
or set of SNPs that predict 
the phenotypic trait

� In pharmaceutical industry 
– the interesting trait is 
response to treatment
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Logistic regression

� Goal: relate explanatory variables x to a binary response 
variable y

� Let y*  be a continuous variable. It is not part of the data, 
only part of the model

� Model relationship between y* and x using simple linear 
regression: y*=β0+ β1x+ε

� Model the relationship between y and y* as a function of 
the sign of y*: y=1 if y*>0, =0 otherwise

� Assume that the errors ε follow a logistic distribution:
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Logistic regression
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MLE for logistic regression
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Comparing logistic models

� Let M and M’ be two logistic regression models

� Let |M| and |M’| be the dimensions of the models

� Let l*(M) be the maximum value of the log-likelihood 
function of model M

� Let the deviance of model M be D(M)=-2l*(M)

� Since l*(M)≤l*(M’) then D(M)≥D(M’)

� Note that this result holds because the models are nested 
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Comparing logistic models

To test the hypothesis

one can use the likelihood ration statistic:
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Comparing logistic models

If the models are non nested, one can use:

MnMDMBIC

MMDMAIC

)log()()(

2)()(

+=

+=



© Yossi Levy 2011

33

Example

Data on ~100 subjects, ~250 SNPs
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Data for SNP rs10014
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Model 1: SNP only

The only explanatory variable is SNP
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Model 2: SNP and drug

Explanatory variables are SNP and drug
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Model 3: add interaction and 
covariates

Explanatory variables are SNP, drug, SNP*drug and all covariates

38

Model 4: remove non-contributing 
covariates

Explanatory variables are SNP, drug, SNP*drug and bsev
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Typical GWAS study approach

� Data QC

� Remove SNPs with >5% missing data and or nonrandom 
missingness

� Remove SNPs with low Minor Allele Frequency

� Remove SNPs that depart from HWE

� Remove individuals with high percent of missing data

� Run logistic regression model for each of the SNPs

� Identify top SNPs with significant drug and SNP interaction

� Try to model interactions between top SNPs (later)

� Identify SNPs for candidate gene study
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Log linear models

� Alternative approach to model association between 
categorical variables

� Instead of modeling the response probability, 
expected cell counts are modeled: log(mij)=….

nn.2n.1

n2.n12n212

n1.n12n111
X1

21

X2
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Independence model
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General model for 2x2 table
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Saturated model:

Interpretation of parameters:

The hypothesis of independence 
between X1 and X2 is equivalent to 

H0: u12(11)=0
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Simple example

497011763794

19752181757Yes (2)

29959582037No (1)
Response

Bb or bb (2)BB (1)

SNP
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Analysis

“Usual” chi-square analysis

Log-linear analysis – saturated model



© Yossi Levy 2011

45

Connection between log-linear 
models and logistic regression

� Assuming independence:

� This is the intercept only logistic regression
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What about a saturated model?

� Similarly we receive

� Which is actually a logistic regression model, with intercept an a term 
that depends on X2
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3-way table

48

The saturated model [123]
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Saturated model results

50

Independence model [1][2][3]
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Conditional independence model
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[12][13]: conditional independence of X2 and X3 given X1:
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Conditional independence model
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Two other possible models
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One variable independent of two others [1][23]: 

X1 is independent of {X2 , X3}

No second order interaction  [12][13][23]: no clear interpretation 
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Association molecule
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Model hierarchy
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Bayesian approach

� The log-linear models fail when one (or more) of the cells in 
the contingency table has a frequency of zero

� A common fix for that is to replace the zero by 0.5 or by 1

� This approach is criticized since the data is perturbed

� A possible approach is the Bayesian approach

� The count data is multinomial, but what if we assume that 
the multinomial distribution parameters are also random 
variables? 
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Model setup

� Let D be the observed cell count for a 2x2 contingency 
table: D={n11, n12, n21, n22} 

� The data D could have arisen under two hypotheses

� H1: X1 and X2 are independent

� H2: X1 and X2 are not independent

� Before seeing the observed data, we assume a priori 
that both hypotheses are equally likely:

5.0)()( 21 == HPHP
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Applying Bayes theorem

� The Bayes Factor represent the ratio of the posterior 
odds of H1 to its prior odds
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Integrated likelihood

� P(D|Hi) is the integrated likelihood of D, obtained by 
averaging the likelihood over all possible values of the 
parameters under Hi.

� What are the parameters?
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Modeling the prior distribution

4α2α2α

2αααYes (2)

2αααNo (1)
Response

Bb or bb (2)BB (1)

SNP

� Before seeing the data, we have no knowledge about which 
combination of categories  are more or less likely

� The natural way to model the distribution of the multinomial 
parameters is the Dirichlet distribution – an extension of the 
Beta distribution, as it is conjugate the Multinomial 
distribution
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The Dirichlet Distribution
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Assuming H2 - interaction
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Integrated likelihood under H2
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Assuming H1 - independence

� Pij=pi.·p.j, , therefore:

� Assume independent Dirichlet prior for raw and 
columns marginal probabilities:
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Integrated likelihood under H2

12

2.

12

1.

12

.2

12

.1

2.1..2.1

2.1..2.1

221.2.1

)2()2()2()2(

)4(

),|,,,(

−+−+−+−+⋅
+Γ+Γ+Γ+Γ

+Γ

=

αααα

αααα
α

α

nnnn
pppp

nnnn

n

DppppP

2

4

2.1..2.1

1

)4(

)2(

)2()2()2()2(

)4(

)|(

α
α

αααα
α

Γ
Γ
⋅

+Γ⋅+Γ⋅+Γ⋅+Γ
+Γ

=

nnnn

n

HDP


