

Genome and DNA

- Genome contains all biological information
- Biological information is encoded in **DNA**
- DNA is divided to discrete units called **Genes**
- Genes are packed into Chromosomes
- DNA is made of four bases: A, G, C and T

3

Alleles and expression

- Each gene is represented by two copies, called Alleles
- Genotype Combination of alleles
- Homozygous gene both alleles are the same
- **Heterozygous** gene alleles are different
- Phenotype- expression of genotype
- A dominant allele is almost always expressed
- A recessive allele is expressed only if there are two copies of that allele

,

Polymorphism

- Some expressed traits are attributed to variation in DNA sequence
- When two individuals display different phenotypes in the same trait, they have two different alleles in the same gene.
- That gene is therefore said to be **polymorphic**.

5

The Human Genome

- 46 chromosomes 23 pairs
- 2 meters of DNA
- 3 billion DNA bases
- 25000 genes
- 10 million SNPs

"Genome, Henderson! We're working on human genome!"

Types of genetics studies

Studies to investigate genotype-trait association within a population of **unrelated individuals**:

- Candidate polymorphism studies
- Candidate gene studies
- Fine mapping studies
- Gnome-wide association studies (GWAS)

Candidate polymorphism studies

- Consider polymorphism(s) within a gene
- There is an a priori hypothesis about functionality
- Primary hypothesis: the variable site under investigation is functional.
- That is, the given SNP (or set of SNPS) influence the disease trait directly

q

Candidate gene studies

- Consider multiple SNPs within a gene
- SNPs are not assumed to be functional
- However, the selected SNPs may be associated to a functional SNP within the gene
- This association is called Linkage Disequilibrium

Fine mapping studies

 Set to identify with a high level of accuracy the location of a disease-causing variant

11

Gnome Wide Association Studies

- Similar to candidate gene approach
- Aim to identify association between SNPs and trait
- Less hypothesis driven
- Involves the characterization of a much larger number of SNPs

Hardy-Weinberg Equilibrium

- A theoretical description of the relationship between genotype and allele frequencies
- HWE denotes independence of the alleles at a single site between two homologous chromosomes
- Let p be the frequency of the dominant allele A and q and let be the frequency of the recessive allele a (p+q=1).
- The expected genotype frequencies are:

$$p_{AA} = p^{2}$$
 $p_{Aa} = 2pq = 2p(1-p)$
 $p_{aa} = q^{2} = (1-p)^{2}$

13

Testing HWE

		Homolog 2		
		Α	а	
Homolog 1	Α	n ₁₁	n ₁₂	n _{1.}
Homolog 1 a		n ₂₁	n ₁₂	n _{2.}
·		n. ₁	n _{.2}	n

- n_{12} and n_{21} are not observed. Only $n_{12}^* = n_{12} + n_{21}$ is known
- p_A is estimated by (2n₁₁+ n^{*}₁₂)/2n
- Using the estimate for p_A we can calculate the expected counts E₁₁, E*₁₂ and E₂₂ corresponding to n₁₁, n*₁₂ and n₂₂ and construct a goodness of fit Chi-square test
- Another option is using Fisher's Exact test

Example

Genotype	AA	AC	CC
Count (n _i)	48	291	724
Expected (O _i)	35.22	316.55	711.22

$$p_A = \frac{2 \cdot 48 + 291}{2 \cdot 1063} = 0.182$$
 MAF – Minor Allele Frequency

$$O_{AA} = 1063 \cdot 0.182^2 = 35.22$$

$$O_{AC} = 1063 \cdot 2 \cdot 0.182 \cdot (1 - 0.182) = 316.55$$

$$O_{CC} = 1063 \cdot (1 - 0.182)^2 = 711.22$$

$$\chi^2 = \frac{(48 - 35.22)^2}{35.22} + \dots = 6.927 > 3.84 = \chi^2_{1,0.05}$$

15

HWE implications

- HWE implies constant alleles frequencies over generations
- HWE is violated in the presence of population admixture

 a situation in which mating occurs between two populations for which the allele frequencies differ
- HWE is violated in the presence of population stratification – combination of populations in which breeding occurs within but not between subpopulations
- HWE is violated when mating occurs between relatives

Deviation from HWE

- Check if population admixture or stratification is present
 - Approaches: covariates, PCA, MDS
- May indicate genotyping error

17

Linkage Disequilibrium

- Recall that in candidate gene studies and GWAS, studied SNPs may not be functional
- However, it is hoped that they are associated with the trait under consideration
- LD: an association in the alleles present at each of two sites present on a genome

Linkage Disequilibrium

Expected allele distributions under independence

		Site		
		B	b	
Site 1	A a	$n_{11} = Np_A p_B$ $n_{21} = Np_a p_B$	$n_{12} = N p_A p_b$ $n_{22} = N p_a p_b$	$n_{1.} = Np_A$ $n_{2.} = Np_a$
		$n_{.1} = N p_B$	$n_{.2} = N p_b$	N = 2n

Observed allele distributions under LD

		Site		
		B	b	
Site 1	A a	$n_{11} = N(p_A p_B + D)$ $n_{21} = N(p_a p_B - D)$	$n_{12} = N(p_A p_b - D)$ $n_{22} = N(p_a p_b + D)$	$n_{1.}$ $n_{2.}$
		$n_{.1}$	$n_{.2}$	N = 2n

19

Estimation of D

$$\hat{p}_A = n_{1.} / N$$
 $\hat{p}_B = n_{.1} / N$ $\hat{p}_{AB} = ???$

The number of individuals with A and B on the same allele is not observed

Haplotype pair: (AB,ab)

Haplotype pair: (Ab,aB)

Estimation of p_{AB}

Genotype counts for two biallelic loci

			Site 2	
		BB	Bb	$^{\mathrm{bb}}$
Site 1	AA Aa	n_{11} n_{21}	n_{12} n_{22}	n_{13} n_{23}
	aa	n_{31}	n_{32}	n_{33}

$$\theta = (p_{AB}, p_{Ab}, p_{aB}, p_{ab})$$

$$\log L(\theta|n_{11}, \dots, n_{33}) \propto (2n_{11} + n_{12} + n_{21}) \log p_{AB}$$

$$+ (2n_{13} + n_{12} + n_{23}) \log p_{Ab} + (2n_{31} + n_{21} + n_{32}) \log p_{aB}$$

$$+ (2n_{33} + n_{32} + n_{23}) \log p_{ab} + n_{22} \log(p_{AB}p_{ab} + p_{Ab}p_{aB})$$

$$p_{Ab} = p_A - p_{AB}$$
, $p_{aB} = p_B - p_{AB}$ and $p_{ab} = 1 - p_A - p_B - p_{AB}$.

21

Definition of D'

$$D' = \frac{|D|}{D_{\text{max}}}$$

$$D' = \frac{|D|}{D_{\text{max}}}$$

$$D_{\text{max}} = \begin{cases} \min(p_A p_b, p_a p_B) & D > 0 \\ \min(p_A p_B, p_a p_b) & D < 0 \end{cases}$$

Another approach for LD

		Site 2		
		B	b	
Site 1	A a		$n_{12} = N(p_A p_b - D)$ $n_{22} = N(p_a p_b + D)$	$n_{1.}$ $n_{2.}$
		$n_{.1}$	$n_{.2}$	N = 2r

- Calculate "Pearson's chi-square statistic" for this table
- Define

$$r^2 = \chi^2/N$$

 However, be aware that the "p-value" associated with the chi-square statistic is not valid

23

Relationship between r² and D

$$\chi^{2} = \sum_{i,j} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{il}} = \sum_{i,j} \frac{\left(N \cdot D\right)^{2}}{E_{il}} =$$

$$= (ND)^{2} \cdot \left(\frac{1}{Np_{A}p_{B}} + \frac{1}{Np_{A}p_{b}} + \frac{1}{Np_{a}p_{B}} + \frac{1}{Np_{a}p_{b}}\right) =$$

$$= \frac{ND^{2}}{p_{A}p_{B}p_{a}p_{b}}$$

$$r^2 = \frac{\chi^2}{N} = \frac{D^2}{p_A p_B p_a p_b}$$

Logistic regression

- Goal: relate explanatory variables x to a binary response variable y
- Let y* be a continuous variable. It is not part of the data, only part of the model
- Model relationship between y^* and x using simple linear regression: $y^* = \beta_0 + \beta_1 x + \epsilon$
- Model the relationship between y and y* as a function of the sign of y*: y=1 if y*>0, =0 otherwise
- Assume that the errors ε follow a logistic distribution:

$$F(t) = \frac{\exp(t)}{1 + \exp(t)}$$

27

Logistic regression

$$P(y=1|x) = P(y^* > 0|x) =$$

$$= P(\beta_0 + \beta_1 x + \varepsilon > 0 \mid x) =$$

$$= P(\varepsilon > -(\beta_0 + \beta_1 x))$$

$$= P(\varepsilon < \beta_0 + \beta_1 x) =$$

$$=\frac{\exp(\beta_0+\beta_1x)}{1+\exp(\beta_0+\beta_1x)}$$

 \Rightarrow

$$\log \frac{P(y=1 | x)}{P(y=0 | x)} = \beta_0 + \beta_1 x$$

MLE for logistic regression

$$L(\theta) = \prod [P(y_i = 1 \mid x_i)]^{y_i} [1 - P(y_i = 1 \mid x_i)]^{1 - y_i}$$

Denote
$$\pi_i = P(y_i = 1 \mid x_i) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$$

$$l(\theta) = \sum (y_i \log \pi_i + (1 - y_i) \log(1 - \pi_i))$$

29

Comparing logistic models

Let M and M' be two logistic regression models

$$\begin{split} & \text{M}: \log \frac{P(y=1|x_1,\ldots,x_p)}{P(y=0|x_1,\ldots,x_p)} = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p \\ & \text{M}': \log \frac{P(y=1|x_1,\ldots,x_p,x_{p+1},\ldots,x_p)}{P(y=0|x_1,\ldots,x_p,x_{p+1},\ldots,x_p)} = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \beta_{p+1} x_{p+1} + \ldots + \beta_p x_p. \end{split}$$

- Let |M| and |M'| be the dimensions of the models
- Let I*(M) be the maximum value of the log-likelihood function of model M
- Let the deviance of model M be D(M)=-2I*(M)
- Since I*(M)≤I*(M') then D(M)≥D(M')
- Note that this result holds because the models are nested

3(

Comparing logistic models

To test the hypothesis

$$H_0: \beta_{p+1} = \ldots = \beta_{p'} = 0$$

one can use the likelihood ration statistic:

$$G^2(M \mid M') = D(M) - D(M') \xrightarrow{D} \chi^2_{p'-p}$$

31

Comparing logistic models

If the models are non nested, one can use:

$$AIC(M) = D(M) + 2|M|$$

$$BIC(M) = D(M) + \log(n)|M|$$

Model 1: SNP only

The only explanatory variable is SNP

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	126.598	128.473			
SC	129.193	133.664			
-2 Log L	124.598	124.473			

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	0.1243	1	0.7244	
Score	0.1231	1	0.7257	
Wald	0.1230	1	0.7258	

35

Model 2: SNP and drug

Explanatory variables are SNP and drug

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	126.598	126.701		
SC	129.193	134.486		
-2 Log L	124.598	120.701		

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	3.8971	2	0.1425		
Score	3.8424	2	0.1464		
Wald	3.7550	2	0.1530		

Model 3: add interaction and covariates

Explanatory variables are SNP, drug, SNP*drug and all covariates

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	126.598	118.902			
SC	129.193	139.663			
-2 Log L	124.598	102.902			

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	21.6955	7	0.0029	
Score	19.5362	7	0.0067	
Wald	16.2817	7	0.0227	

Type 3 Analysis of Effects					
Effect	DF	Wald Chi-Square	Pr > ChiSq		
drug	1	0.0030	0.9564		
anp	1	0.0141	0.9056		
drug*anp	1	10.1119	0.0015		
disdur	1	2.9776	0.0844		
bsev	1	3.1186	0.0774		
sex	1	1.6254	0.2023		
age	1	1.1926	0.2748		

37

Model 4: remove non-contributing covariates

Explanatory variables are SNP, drug, SNP*drug and bsev

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	126.598	117.937		
SC	129.193	130.913		
-2 Log L	124.598	107.937		

Testing Global Null Hypothesis: BETA=0						
Test	Chi-Square	DF	Pr > ChiSq			
Likelihood Ratio	16.6608	4	0.0022			
Score	15.3764	4	0.0040			
Wald	13.4176	4	0.0094			

Type 3 Analysis of Effects					
Effect	DF	Wald Chi-Square	Pr > ChiSq		
drug	1	0.1534	0.6953		
anp	1	0.0039	0.9499		
drug*znp	1	8.6785	0.0032		
bsev	1	3.1997	0.0737		

Typical GWAS study approach

- Data QC
 - Remove SNPs with >5% missing data and or nonrandom missingness
 - Remove SNPs with low Minor Allele Frequency
 - Remove SNPs that depart from HWE
 - Remove individuals with high percent of missing data
- Run logistic regression model for each of the SNPs
- Identify top SNPs with significant drug and SNP interaction
- Try to model interactions between top SNPs (later)
- Identify SNPs for candidate gene study

39

Log linear models

- Alternative approach to model association between categorical variables
- Instead of modeling the response probability, expected cell counts are modeled: log(m_{ii})=....

		×		
		1	2	
X ₁	1	n ₁₁	n ₁₂	n _{1.}
^1	2	n ₂₁	n ₁₂	n _{2.}
		n. ₁	n _{.2}	n

Independence model

$$\hat{m}_{ij} = \frac{n_{i.}n_{.j}}{n}$$

$$\Rightarrow \log \hat{m}_{ij} = -\log n + \log n_{i.} + \log_{n.j} n_{i.}$$

 \Rightarrow Model:

$$\log m_{ij} = u + u_{1(i)} + u_{2(j)}$$
 $i = 1, 2$ $j = 1, 2$

$$u_{1(1)} + u_{1(2)} = 0, \quad u_{2(1)} + u_{2(2)} = 0$$

41

General model for 2x2 table

Saturated model:

$$\log m_{ij} = u + u_{1(i)} + u_{2(j)} + u_{12(ij)} \quad i = 1, 2 \ j = 1, 2$$

$$u_{1(1)}+u_{1(2)}=0,\quad u_{2(1)}+u_{2(2)}=0$$

$$u_{12(1j)} + u_{12(2j)} = 0$$
 for $j = 1,2$

$$u_{12(i1)} + u_{12(i2)} = 0$$
 for $i = 1,2$

Interpretation of parameters:

$$u = \frac{1}{4} \sum_{ij} \log m_{ij}$$

$$u_{1(1)} = \frac{1}{4} \log \frac{m_{11} m_{12}}{m_{21} m_{22}}$$

$$u_{12(11)} = \frac{1}{4} \log \frac{m_{11} m_{22}}{m_{21} m_{12}}$$

The hypothesis of independence between \mathbf{X}_1 and \mathbf{X}_2 is equivalent to

H0: $u_{12(11)} = 0$

etc.

		S		
		BB (1)	Bb or bb (2)	
Pospopso	No (1)	2037	958	2995
Response	Yes (2)	1757	218	1975
		3794	1176	4970

43

Analysis

"Usual" chi-square analysis

Table of disease by anp					
disease		anp			
Frequency Expected	BB	Вь	Total		
N	2037 2286.3	958 708.68	2995		
Y	1757 1507.7	218 467.32	1975		
Total	3794	1176	4970		

Statistic	DF	Value	Prob
Chi-Square	1	289.1536	<.0001
Likelihood Ratio Chi-Square	1	312.4785	<.0001
Continuity Adj. Chi-Square	1	287.9950	<.0001
Mantel-Haenszel Chi-Square	1	289.0954	<.0001
Phi Coefficient		-0.2412	
Contingency Coefficient		0.2345	
Cramer's V		-0.2412	

Log-linear analysis – saturated model

Analysis of Maximum Likelihood Estimates					
Parameter		Estimate	Standard Error	Chi- Square	Pr > ChiSq
disease	N	0.4071	0.0204	396.27	<.0001
anp	BB	0.7103	0.0204	1206.66	<.0001
disease*anp	NBB	-0.3331	0.0204	265.39	<.0001

Connection between log-linear models and logistic regression

Assuming independence:

$$\begin{split} &\log \frac{P(X_1 = 2 \mid X_2 = j)}{P(X_1 = 1 \mid X_2 = j)} = \log \frac{P(X_1 = 2, X_2 = j)}{P(X_1 = 1, X_2 = j)} = \\ &= \log \frac{p_{2j}}{p_{1j}} = \log \frac{m_{2j}}{m_{1j}} = \log m_{2j} - \log m_{1j} = \\ &= (u + u_{1(2)} + u_{2(j)}) - (u + u_{1(1)} + u_{2(j)}) = \\ &= u_{1(2)} - u_{1(1)} \end{split}$$

This is the intercept only logistic regression

$$\log \frac{P(X_1 = 2 \mid X_2)}{P(X_1 = 2 \mid X_2)} = \beta_0$$

45

What about a saturated model?

Similarly we receive

$$\log \frac{P(X_1 = 2 \mid X_2 = 1)}{P(X_1 = 1 \mid X_2 = 1)} = \left(u_{1(2)} - u_{1(1)}\right) + \left(u_{12(21)} - u_{12(11)}\right)$$

$$\log \frac{P(X_1 = 2 \mid X_2 = 2)}{P(X_1 = 1 \mid X_2 = 2)} = \left(u_{1(2)} - u_{1(1)}\right) + \left(u_{12(22)} - u_{12(12)}\right)$$

 Which is actually a logistic regression model, with intercept an a term that depends on X₂

$$\log \frac{P(X_1 = 2 \mid X_2)}{P(X_1 = 2 \mid X_2)} = \beta_0 + \beta_1 X_2$$

3-way table

Table 1 of snp1 by snp2						
Cor	ntrolling	for disea	se=No			
anpl		anj	p2			
Frequency Expected	ВВ	Вь	bb	Total		
AA	1167 1176.6	377 364.48	186 188.88	1730		
Aa	763 760.39	225 235.55	130 122.07	1118		
aa	107 29 11 147 99.98 30.971 16.05					
Total	2037	631	327	2995		

Table 2 of snpl by snp2					
Cor	ntrolling	for disea	se=Yes		
anpl		an	p2		
Frequency Expected	ВВ	Вь	bb	Total	
AA	1509 1515.1	16 16.385	179 172.47	1704	
Aa	234 226.74	2 2.4519	19 25.81	255	
aa	14 1 2 17 15.116 0.1635 1.7206				
Total	1757	19	200	1976	

47

The saturated model [123]

$$\log m_{ujk} = u + \\ + u_{1(i)} + u_{2(j)} + u_{3(k)} + \\ + u_{12(ij)} + u_{13(ik)} + u_{23(jk)} + \\ + u_{123(ijk)}$$

Independence model [1][2][3]

$$\log m_{ujk} = u + u_{1(i)} + u_{2(j)} + u_{3(k)}$$

Maximum Likelihood Analysis of Variance					
Source	DF	Chi-Square	Pr > ChiSq		
disease	1	205.90	<.0001		
snpl	2	2049.73	<.0001		
snp2	2	3114.38	<.0001		
Likelihood Ratio	12	1072.57	<.0001		

Analysis of Maximum Likelihood Estimates					
Parameter		Estimate	Standard Error	Chi- Square	Pr > ChiSq
disease	No	0.2079	0.0145	205.90	<.0001
snpl	AA	1.3194	0.0298	1960.84	<.0001
	Aa	0.4027	0.0321	156.92	<.0001
snp2	BB	1.2461	0.0223	3112.04	<.0001
	Bb	-0.5181	0.0304	290.59	<.0001

Conditional independence model

[12][13]: conditional independence of $\rm X_2$ and $\rm X_3$ given $\rm X_1$:

$$\begin{split} \log m_{ujk} &= u + \\ &+ u_{1(i)} + u_{2(j)} + u_{3(k)} + \\ &+ u_{12(ij)} + u_{13(ik)} \end{split}$$

51

Conditional independence model

Maximum Likelihood Analyziz of Variance					
Source	DF	Chi-Square	Pr > ChiSq		
disease	1	336.40	<.0001		
snpl	2	1570.67	<.0001		
snp2	2	2253.48	<.0001		
disease*anpl	2	409.65	<.0001		
disease*anp2	2	212.25	<.0001		
Likelihood Ratio	8	8.59	0.3778		

Analysis of Maximum Likelihood Estimates					
Parameter		Estimate	Standard Error	Chi- Square	Pr > ChiSq
disease	No	1.0909	0.0595	336.40	<.0001
snpl	AA	1.5682	0.0457	1179.22	<.0001
	Aa	0.4001	0.0489	67.00	<.0001
snp2	ВВ	1.6169	0.0430	1415.12	<.0001
	Вь	-1.2326	0.0792	242.06	<.0001
disease*anpl	No AA	-0.6008	0.0457	173.11	<.0001
	No Aa	0.1306	0.0489	7.14	0.0075
disease*anp2	No BB	-0.6165	0.0430	205.71	<.0001
	No Bb	1.0610	0.0792	179.37	<.0001

Two other possible models

One variable independent of two others [1][23]:

X1 is independent of {X2, X3}

$$\log m_{ujk} = u + u_{1(i)} + u_{2(j)} + u_{3(k)} + u_{23(jk)}$$

No second order interaction [12][13][23]: no clear interpretation

$$\begin{split} \log m_{ujk} &= u + \\ &+ u_{1(i)} + u_{2(j)} + u_{3(k)} + \\ &+ u_{12(ij)} + u_{13(ik)} + u_{23(jk)} \end{split}$$

Bayesian approach

- The log-linear models fail when one (or more) of the cells in the contingency table has a frequency of zero
- A common fix for that is to replace the zero by 0.5 or by 1
- This approach is criticized since the data is perturbed
- A possible approach is the Bayesian approach
- The count data is multinomial, but what if we assume that the multinomial distribution parameters are also random variables?

Model setup

- Let D be the observed cell count for a 2x2 contingency table: D={n₁₁, n₁₂, n₂₁, n₂₂}
- The data D could have arisen under two hypotheses
 - H₁: X₁ and X₂ are independent
 - H₂: X₁ and X₂ are not independent
- Before seeing the observed data, we assume a priori that both hypotheses are equally likely:

$$P(H_1) = P(H_2) = 0.5$$

57

Applying Bayes theorem

$$D(D \mid H \setminus D(H))$$

$$P(H_i \mid D) = \frac{P(D \mid H_i)P(H_i)}{P(D)}$$

$$\Rightarrow \frac{P(H_2 \mid D)}{P(H_1 \mid D)} = \frac{P(D \mid H_2)P(H_2)}{P(D \mid H_1)P(H_1)} = B_{21} \cdot \frac{P(H_2)}{P(H_1)}$$

where B_{21} is the Bayes Factor

$$B_{21} = \frac{P(D \mid H_2)}{P(D \mid H_1)}$$

 The Bayes Factor represent the ratio of the posterior odds of H₁ to its prior odds

Integrated likelihood

- P(D|H_i) is the integrated likelihood of D, obtained by averaging the likelihood over all possible values of the parameters under H_i.
- What are the parameters?

59

Modeling the prior distribution

		S		
		BB (1)	Bb or bb (2)	
Response	No (1)	α	α	2α
	Yes (2)	α	α	2α
		2α	2α	4α

- Before seeing the data, we have no knowledge about which combination of categories are more or less likely
- The natural way to model the distribution of the multinomial parameters is the Dirichlet distribution – an extension of the Beta distribution, as it is conjugate the Multinomial distribution

The Dirichlet Distribution

$$X = (X_1, \dots, X_k) \sim Dirichlet(\alpha_1, \dots, \alpha_k) \sim Dirichlet(\alpha)$$
:

$$f_{X_1,\dots,X_k}(x_1,\dots,x_k \mid \alpha_1,\dots,\alpha_k) = \frac{\Gamma(\alpha_1+\dots+\alpha_k)}{\Gamma(\alpha_1)\cdot\dots\cdot\Gamma(\alpha_k)} \cdot x_1^{\alpha_1-1}\cdot\dots\cdot x_k^{\alpha_k-1}$$

if
$$\beta \mid X \sim Multinomial(X)$$

and
$$X \sim Dirichlet(\alpha)$$

then
$$X \mid \beta \sim Dirichlet(\alpha + \beta)$$

61

Assuming H₂ - interaction

$$P(D \mid p) = M \cdot p_{11}^{n_{11}} \cdot p_{12}^{n_{12}} \cdot p_{21}^{n_{21}} \cdot p_{22}^{n_{22}}$$

$$P(p_{11}, p_{12}, p_{21}, p_{22} \mid \alpha) = \frac{\Gamma(4\alpha)}{\Gamma(\alpha)^4} p_{11}^{\alpha-1} \cdot p_{12}^{\alpha-1} \cdot p_{21}^{\alpha-1} \cdot p_{22}^{\alpha-1}$$

$$\begin{split} P(p_{11}, p_{12}, p_{21}, p_{22} \mid D, \alpha) &= \\ \frac{\Gamma(n + 4\alpha)}{\Gamma(n_{11} + \alpha) \cdot \Gamma(n_{12} + \alpha) \cdot \Gamma(n_{21} + \alpha) \cdot \Gamma(n_{22} + \alpha)} \cdot p_{11}^{n_{11} + \alpha - 1} \cdot p_{12}^{n_{12} + \alpha - 1} \cdot p_{21}^{n_{12} + \alpha - 1} \cdot p_{22}^{n_{22} + \alpha - 1} \end{split}$$

Integrated likelihood under H₂

$$\begin{split} &P(D\mid H_2) = \\ &= \int p_{11}^{n_{11}} \, p_{12}^{n_{22}} \, p_{21}^{n_{21}} \, p_{22}^{n_{22}} P(p_{11}, p_{12}, p_{21}, p_{22} \mid \alpha) dp_{11} dp_{12} dp_{21} dp_{22} = \end{split}$$

$$= \frac{\Gamma(n+4\alpha)}{\Gamma(n_{11}+\alpha)\cdot\Gamma(n_{12}+\alpha)\cdot\Gamma(n_{21}+\alpha)\cdot\Gamma(n_{22}+\alpha)}\cdot\frac{\Gamma(\alpha)^4}{\Gamma(4\alpha)}$$

63

Assuming H₁ - independence

• $P_{ii}=p_{i.}\cdot p_{.i..}$ therefore:

$$P(D \mid p) = M \cdot p_1^{n_1} \cdot p_2^{n_2} \cdot p_1^{n_1} \cdot p_2^{n_2}$$

 Assume independent Dirichlet prior for raw and columns marginal probabilities:

$$P(p_{1.}, p_{2.} \mid \alpha) = \frac{\Gamma(4\alpha)}{\Gamma(2\alpha)^2} p_{1.}^{2\alpha-1} \cdot p_{2.}^{2\alpha-1}$$

$$P(p_{.1}, p_{.2}\alpha) = \frac{\Gamma(4\alpha)}{\Gamma(2\alpha)^2} p_{.1}^{2\alpha-1} \cdot p_{.2}^{2\alpha-1}$$

Integrated likelihood under H₂

$$\begin{split} P(p_{1}, p_{2}, p_{1}, p_{2} \mid D, \alpha) &= \\ \frac{\Gamma(n + 4\alpha)}{\Gamma(n_{1} + 2\alpha)\Gamma(n_{2} + 2\alpha)\Gamma(n_{1} + 2\alpha)\Gamma(n_{2} + 2\alpha)} \cdot p_{1}^{n_{1} + 2\alpha - 1} p_{2}^{n_{2} + 2\alpha - 1} p_{.1}^{n_{1} + 2\alpha - 1} p_{.2}^{n_{2} + 2\alpha - 1} \end{split}$$

$$\begin{split} P(D \mid H_1) &= \\ \frac{\Gamma(n+4\alpha)}{\Gamma(n_1+2\alpha) \cdot \Gamma(n_2+2\alpha) \cdot \Gamma(n_1+2\alpha) \cdot \Gamma(n_2+2\alpha)} \cdot \frac{\Gamma(2\alpha)^4}{\Gamma(4\alpha)^2} \end{split}$$