

DOE – Design of Experiments

Yossi Levy

Why use DOE?

- Decisions should be based on information
- Data is not information
- We need collect data that can be transformed into information
- We also need to know how to do the transformation
- DOE has the two capabilities:
 - Decide what data to collect
 - Analyze the data to extract useful information

DOE and QbD

- Design Of Experiments is an essential component in QbD.
- It leads to detailed verification of how product and process definition affect key quality characteristics.
- It establishes a basis for defining the design space.
- Experiments enable us to map the process.
- A reliable map lets us drive safely.
- A reliable process map permits changes without adverse effects on product performance.

3

Basic principles

- Randomization
- Blocking
- Replication
- Factorial Structure

Randomization

- Make arbitrary decisions randomly.
 - Who gets each treatment?
 - Where are materials placed?
 - What gets done first?

Randomization helps to guarantee that the experiment is fair; it is not biased in favor of one of the treatment

5

Blocking

- Often units can be grouped by factors that are not of direct interest, but will affect results.
 - Source of raw materials.
 - Day/time of preparation or measurement.
 - Location in shaker or plate

Replication

- We need to know something about the variability of outcomes when conditions are not changed.
- That gives a basis to know if differences between conditions are "just noise".

7

Factorial Structure

- Most processes are affected by many factors
- An experiment can:
 - Modify factors systematically.
 - Hold factors constant.
 - Ignore factors.

The standard solution

- One-Factor-at-a-Time Experiments OFAT
- Modify one factor; hold all other factors constant

q

Example: optimizing yield

- Two factors affect the yield of a process:
 - Time of reaction
 - Temperature of reaction
- Feasibility experiments showed that the ranges for these factors are:
 - 60-180 minutes
 - 21-25°C

No aphorism is more frequently repeated in connection with field trials, than that we must ask Nature few questions, or, ideally, one question, at a time.

The writer is convinced that this view is wholly mistaken. Nature, he suggests, will best respond to a logical and carefully thought out questionnaire.

Sir Ronald A. Fischer

Development of cell culture

- Experiment done in a bioreactor
- Only one experiment can be set up in a day
- Response: cell density
- Factors:
 - Solution pH: low=3.25 high=4.75
 - Add carbohydrates: low=0, high=20 g/L
 - Bioreactor type two types
 - Reaction time: low=4 hours, high=8 hours
 - Solution temperature: low=30°C, high=50°C

A total of 25=32 factor combinations

How to design an experiment

- 1. Problem definition
- 2. Response variables
- 3. Controlled effects/factors
- 4. Effect levels
- 5. Noise factors
- 6. Experimental matrix
- 7. Number of runs
- 8. Protocol and SAP