חיפוש באתר

קישורים

עמודים

קטגוריות

ארכיב עבור תגית מה אומרת הסטטיסטיקה

איך נדע האם המכוניות האוטונומיות בטיחותיות

התאונה הקטלנית של אובר

העולם גועש בימים האחרונים בעקבות תאונת הדרכים הקטלנית בה היה מעורב רכב אוטונומי של חברת אובר. התאונה הציתה ויכוחים שונים והעלתה נושאים ישנים לדיון מחודש. מתנהל למשל ויכוח בשאלה מי אשם בתאונה. התשובה, כמובן, תלויה במי שעונה לשאלה (אני לא מביע את דעתי בנושא הזה, ומבקש מכל מי שרוצה להביע את דעתו, שלא יעשה את זה בתגובות לפוסט הזה. זה לא המקום). הרשת התמלאה בשמועות על כך שנושא בטיחות המכוניות האוטונומיות אינו בעדיפות עליונה אצל חברת אובר. כמו כן ניצתו מחדש דיונים בתחום האתיקה שאמורה להדריך (אולי) את מתכנני המכוניות האוטונומיות. כך למשל, דפנה מאור, במאמר בעיתון דה-מרקר, שואלת שאלות חשובות במאמר עם הכותרת הפרובוקטיבית "האם תסכימו להידרס על ידי רובוט?" אמיתי זיו ענה לה שאם יידרס, אז הוא מעדיף להידרס על ידי מכונית אוטונומית (לא ברור לי למה זה משנה לו). אתם מוזמנים לקרוא את המאמרים האלה ומאמרים אחרים ולנהל דיונים ביניכם (אם כי, אני שוב מבקש להימנע מלנהל את הדיון הזה כאן בבלוג).

עוד כתבה מעניינת בדה-מרקר נשאה את הכותרת "אחת החולשות העיקריות של מכוניות אוטונומיות היא זיהוי הולכי רגל". הכותרת היא ציטוט של דברים שאמר אחד המרואיינים בכתבה, דני עצמון (שהינו בעל חברה המפתחת סימולטורים שנועדו לאמן ולשפר את היכולת של מערכות אוטונומיות ברכבים).

עצמון אמר דברים מעניינים נוספים. אני מצטט:

מכון ראנד האמריקאי ביצע בדיקה סטטיסטית שבאמצעותה קבע "רף נהיגה אנושי". "הם לקחו את על ההרוגים בתאונות בארה"ב ב-2015 וחילקו במספר המיילים שנסעו – וגילו שיש 1.1 הרוגים על כל 100 מיליון מיילים של נסיעה. זה הוגדר הרף האנושי – הביצועים של האדם די טובים… המכון חישב ומצא שכדי שמערכות אוטונומיות יגיעו לאותם ביצועים כמו של בני אדם בביטחון של 95%, עליהן לנסוע 11 מיליארד מייל. "בשנה שעברה כל החברות שעוסקות בתחום הזה בארה"ב נסעו ביחד בערך 4 מיליון מייל.

אז בואו נדבר על הסטטיסטיקה.

הסטטיסטיקה של תאונות הדרכים

אני חושב שכולכם תסכימו שככל שנוסעים יותר, יש יותר אינפורמציה על הסיכון לתאונות. אני למשל, לא הייתי מעורב באף תאונת דרכים עם נפגעים בשנתיים האחרונות. מצד שני, אני בקושי נוהג שתי נסיעות קצרות בעיר בכל שבוע[1] שמסתכמות אולי ב-15 קילומטר, שהם קצת פחות מ-800 קילומטר בשנה. ככל שנוסעים יותר, הסיכון להיות מעורב בתאונת דרכים גדל. נכון שהסיכון שונה מנהג לנהג, יש נהגים יותר זהירים ויש כאלה שפחות, אבל העיקרון ברור. לכן יש הגיון בחישוב של מכון ראנד שלוקח את מספר ההרוגים ביחס לכמות הנסועה. מייד אסביר את העקרונות של החישוב, ואציג כמה חישובים משל עצמי.

לפני שאתחיל בחישובים, אציג כמה נתונים שפירסמה הלשכה המרכזית לסטטיסטיקה. בשנת 2015 היו בישראל 12122 תאונות עם נפגעים, מתוכן 292 תאונות קטלניות, 1558 תאונות עם פצועים קשה, ו-10272 תאונות עם נפגעים בדרגת פציעה בינונית או קלה. בתאונות האלה נהרגו 322 איש, 1796 איש נפצעו קשה, ו-20046 איש נפצעו בינוני או קל. ומכאן שהיו תאונות קטלניות בהן היה יותר מהרוג אחד, והוא הדין לגבי הנפגעים האחרים. לכן אתייחס בהמשך למספר התאונות ולא למספר הנפגעים.

האם המספרים האלה גבוהים או נמוכים? תלוי איך מסתכלים על הנתונים. אל תטעו. לדעתי כל תאונה היא טרגדיה. עם זאת, לפעמים צריך להסתכל על המספרים עצמם, וזאת כדי שיהיה אפשר לקבל החלטות מושכלות. כמו שדני עצמון הסביר, צריך להסתכל גם על הנסועה – שהיא סך כל הנסיעות שנסעו כלי הרכב במדינה.[2]. לפי נתוני הלשכה המרכזית לסטטיסטיקה, הנסועה בישראל בשנת 2015 הייתה 54,820 מיליון ק"מ, כלומר כמעט 55 מיליארד ק"מ. מכאן אפשר לחשב כי על כל מיליון ק"מ של נסועה היו בשנת 2015 היו בישראל 0.00533 תאונות קטלניות. זה נראה כמו מספר יותר קטן, אבל זה רק עניין של קנה מידה. באותו אופן ניתן לחשב כי בישראל היו 0.02842 תאונות דרכים עם פצועים קשה (אך ללא הרוגים) לכל מיליון ק"מ, ו-0.18737 תאונות שבהן היו פצועים בינוני או קל (אך לא פצועים קשה ולא הרוגים). בסך הכל היו בישראל 0.22295 תאונות עם נפגעים לכל מיליון ק"מ של נסועה.

הסטטיסטיקאים מכנים את המספרים המתארים את מספר התאונות למיליון ק"מ בשם "קצב התאונות" (או rate באנגלית). זה מדד כללי המתאר את מספר האירועים ליחידת מדידה (בדרך כלל זמן, אך כפי שראיתם, יש גם יחידות מדידה אחרות). דוגמא נוספת[3] לנתונים כאלה יכולה להיות המספר הממוצע של גידולים ממאירים חדשים המתגלים במשך חודש. לפני נתוני הלמ"ס, בשנת 2013 היו בישראל בסך הכל 13546 גברים אצלם התגלו גידולים ממאירים חדשים. זה אומר שקצב הופעת הגידולים החדשים היה בקירוב 1128.8 בחודש.

איך להעריך את רמת הבטיחות של המכוניות האוטונומיות?

עכשיו, כאשר הבנו את הנתונים האלה ומשמעותם, אנחנו יודעים איך להעריך את הבטיחות של המכוניות האוטונומיות. צריך לחשב מהו קצב התאונות שלהן, ולהשוות אותו לקצב של המכוניות ה-"רגילות".

כאן אנחנו נתקלים בבעיה הראשונה: אין נתונים. אנחנו יודעים כי הנסועה הנוכחית של המכוניות האוטונומיות היא בערך 4 מיליון מייל, אבל לא יודעים כמה תאונות היו. לכן אנחנו גם לא יודעים האם מספר ההרוגים עד כה (1) הוא גבוה או לא. מה שאנחנו כן יכולים להגיד במידה רבה של בטחון הוא שגודל המדגם קטן מדי. לפי גודל המדגם הנוכחי האומדן שלנו לקצב התאונות הקטלניות של המכוניות האוטונומיות הוא 0.15385 למיליון ק"מ, כמעט פי 29 מהנתון המקביל של ישראל בשנת 2015. עם זאת, יש לסייג את הדברים ולומר כי האומדן הזה מאוד לא מדוייק, שוב, בגלל גודל המדגם הקטן.  רווח הסמך לקצב, ברמת סמך של 95%, הוא 0.0053 עד 0.5535. זה אומר שייתכן מאוד שקצב התאונות הקטלניות של המכוניות האוטונומיות דומה לקצב של ישראל. שוב, ככל שיצטברו יותר נתונים, האומדן יהיה מדוייק יותר, ובהחלט יכול להיות שב-4 מיליון המייל הבאים לא תהיה אף תאונה קטלנית, ואז אומדן הקצב יקטן ב-50%.

רבים טוענים כי המכוניות האוטונומיות הינן בטוחות יותר ממכוניות רגילות, ואני נוטה להסכים איתם באופן חלקי (אם כי, כמו תמיד, אלוהים מצוי בפרטים הקטנים – ראו שוב את מאמרה של דפנה מאור). אך טענות צריך לגבות בנתונים, וכאמור, אין לנו מספיק נתונים. לכן השאלה שצריך לשאול היא: כמה נתונים צריך כדי שנוכל לומר משהו אינטליגנטי ומגובה בנתונים על הבטיחות של המכוניות האוטונומיות?

כפי שכבר הבנתם, הסטטיסטיקאים של מכון ראנד כבר ערכו חישוב כזה. אני מודה שאני לא כל כך מבין את הנתון של 11 מיליארד מייל שדני עצמון ציטט, ואני מניח שחלק מהדברים "אבדו בתרגום". בכל מקרה, אני מתכוון להציג כאן את העיקרון שלפיו עורכים את החישובים, ולהציג את התוצאות של החישובים שלי.

מודל להתרחשות תאונות דרכים

קוראיי הוותיקים כבר יודעים: כדי לבצע את החישובים הסטטיסטיים יש צורך במודל הסתברותי. להזכירכם, מודל הוא תיאור של המציאות, שייתכן שאינו מדוייק לגמרי, אבל הוא מספיק טוב כדי לתת תשובה אמינה לשאלה שלנו. כל מודל מתבסס על הנחות. הנחות שונות יובילו למודלים שונים ולתשובות שונות.

המודל שאציג לקצב תאונות הדרכים מתבסס על הנחה יחידה: הפיזור של התאונות לאורך השנה הוא אחיד. במילים אחרות, אין תקופות בשנה שיותר מועדות לתאונות מאשר תקופות אחרות. אפשר כמובן להניח הנחות אחרות, שיגדירו מודלים יותר מסובכים. אני אגביל את עצמי למודל הפשוט, כיוון שהמטרה העיקרית שלי היא להסביר את העקרונות הסטטיסטיים. עם זאת, אני לא חושב שמודל מסובך יותר ייתן תוצאות שונות באופן משמעותי, וזאת לאור הניסיון שצברתי במשך השנים בניתוח נתונים דומים.

מההנחה שלי אפשר, עם קצת מתמטיקה, להסיק כי מספר התאונות בשנה הוא משתנה מקרי פואסוני. שוב קוראיי הוותיקים אולי זוכרים שהמודל הזה וההתפלגות הנובעת ממנו הוזכרו כבר בבלוג. זה המודל בו השתמשו הבריטים כדי לבדוק מה הייתה רמת הדיוק של הטילים שהמטירו עליהם הגרמנים בזמן הבליץ על לונדון. למשתנה מקרי שהתפלגותו היא התפלגות פואסון יש פרמטר אחד בלבד – פרמטר הקצב. בישראל של 2015 קצב התאונות הקטלניות היה כזכור 0.00533 למיליון קילומטר. השאלה המעניינת היא: כמה מיליוני ק"מ צריכות המכוניות האוטונומיות לנסוע כדי לנוכל לומר על סמך הנתונים כי קצב התאונות שלהם נמוך מקצב התאונות הקטלניות של ישראל באופן משמעותי?  עם קצת מתמטיקה לא מסובכת במיוחד אפשר לפתח נוסחה שנותנת את התשובה. הנה היא, לא להיבהל, תיכף אסביר הכל, ומי שלא מעוניין בהסברים יכול לדלג הלאה, אל המספרים שחישבתי.

חישוב גודל המדגם בהתפלגות פואסון

 

 

 

 

ההסברים: למבדה-אפס (האות שדומה לאות העברית גימל) מייצגת את קצב הבסיס שאליו אנחנו  רוצים להשוות את הקצב מהמדגם. בדוגמא שלנו קצב הבסיס הוא הקצב של תאונות הדרכים הקטלניות בישראל, כלומר 0.00533 תאונות למיליון קילומטר. האות דלתא (שדומה לאות למד בעברית) מייצגת את ההבדל המשמעותי בין קצב התאונות במדגם (כלומר קצב התאונות של המכוניות האוטונומיות) ובין קצב הבסיס. לדוגמא, אם אנחנו חושבים שהבדל משמעותי יהיה ירידה של 10% בקצב התאונות, הרי שאנו מצפים שקצב התאונות של המכוניות האוטונומיות יהיה 0.004797 (90% מ-0.00533), ולכן ההפרש דלתא שווה ל–.000533. שימו לב שההפרש הוא שלילי. אלפא וביתא הן רמת המובהקות והעוצמה, אני אשתמש בערכים של 5% -90% בהתאמה, והאות Z מסמלת ערכים של ההתפלגות הנורמלית, והם שווים ל-1.645 עבור רמת המובהקות ו- -1.282עבור העוצמה. התוצאה שמתקבלת על ידי החישוב, n, היא גודל המדגם הדרוש, שהוא במקרה שלנו, מספר מיליוני הקילומטרים שהמכוניות האוטונומיות צריכות לנסוע.

מה גודל המדגם הדרוש להערכת הבטיחות?

אם נציב את כל המספרים בנוסחה נקבל כי כדי שנוכל לזהות ירידה מובהקת של 10% בקצב התאונות הקטלניות, נצטרך לראות מה קורה אחרי שהמכוניות האוטונומיות ייסעו 9215 מיליון ק"מ, שהם בערך 6 מיליארד מייל. זה אמנם מספר קטן יותר מהמספר שצוטט בכתבה[4], אבל זה עדיין מספר מטורף. (אני נותן כאן קישור לקובץ אקסל שבעזרתו ביצעתי את החישובים. אתם מוזמנים לבדוק עוד תרחישים).

אחת הסיבות שקיבלנו מספר כל כך מטורף היא שהגדרנו ירידה מאוד קטנה כמשמעותית – רק 10%. יש הטוענים כי כשהמכוניות האוטונומיות ייכנסו לשימוש מסחרי קצב התאונות (או מספר התאונות, שזה בעצם אותו דבר), ירד בצורה הרבה יותר משמעותית. אם זה נכון, גודל המדגם יהיה הרבה יותר קטן. על פי אותה הנוסחה, כדי לזהות באופן מובהק ירידה של 50% בקצב תאונות הדרכים הקטלניות, יש צורך בגודל מדגם של כ-471 מיליון מייל, וכדי לזהות ירידה משמעותית של 90% במספר תאונות הדרכים הקטלניות באופן מובהק יש צורך בגודל מדגם של קצת פחות מ-220 מיליון מייל.

החדשות הטובות הן שכדי לזהות ירידה מובהקת של 90% בקצב הכולל של תאונות דרכים עם נפגעים יש צורך בגודל מדגם של קצת יותר מ-5 מיליון מייל, ואנחנו כמעט שם. מצד שני, יש המון חברות שעורכות המון ניסויים, ולא סביר שיוקם מאגר נתונים בו יקובצו הנתונים של כל החברות, שהרי כל חברה רוצה לשמור את הנתונים שלה בסוד מהמתחרות. אז אנחנו לא באמת מתקרבים ליעד של 5 מיליון מייל.

עוד חדשות טובות: הנסועה השנתית בארצות הברית היא קצת יותר מ-3 טריליון מייל, כלומר 3000 מיליארד מייל (או 3 מיליון מיליוני מייל), כך שאם באורח פלא כל המכוניות בארצות הברית יהפכו להיות אוטונומיות, נדע את כל התשובות תוך יום בערך. זה לא יקרה כמובן. אפשר להמשיך ללהטט בחישובים שייקחו בחשבון את קצב חדירת המכוניות האוטונומיות לשימוש, אבל אני אעצור כאן.

מתי נדע האם המכוניות האוטונומיות בטיחותיות?

המסקנה שלי היא שייתכן שנדע יחסית בקרוב (אם תהיה התערבות רגולטורית) האם המעבר למכוניות אוטונומיות יביא לירידה מאוד גדולה (90%) במספר תאונות הדרכים עם נפגעים. אם הירידה קטנה יותר, נצטרך לחכות זמן רב יותר. בקשר לתאונות דרכים יותר חמורות, כאלה עם פצועים קשה או תאונות קטלניות, יעבור עוד המון זמן עד שנדע משהו. מה שיקרה בפועל הוא שמכוניות אוטונומיות ייכנסו לשימוש בלי שיהיה לנו מושג ירוק על רמת הבטיחות שלהן.


הערות
  1. פעם אחת לקניות, ופעם אחת כדי להסיע את הילד לחוג []
  2. לדוגמא, אם 10 מכוניות נסעו מתל אביב לחיפה, מרחק של 100 ק"מ, אז הנסועה הכוללת שלהן הייתה 10×100 כלומר 1000 ק"מ []
  3. תסלחו על על הדוגמאות המדכאות []
  4. אני לא יודע מה היו ההנחות שלהם ומה הם חישבו בדיוק []

הערות על חישוב מדד השכירות של הלשכה המרכזית לסטטיסטיקה

ביום שני השבוע, 29.1.208, התפרסמה בגלובס כתבה שדיווחה על טעות מהותית בחישוב מדד השכירות של הלשכה המרכזית לסטטיסטיקה, עליה דיווחה המייעצת שהקימה הממשלה לבחינת מדדי המחירים בשוק הנדל"ן.

הפעם אתחיל מהסיכום

  • הועדה התייחסה בצורה עניינית לנושא אמידת שכר הדירה. אין המלצה לתקן את המדדים לאחור, ואין המלצה לשנות את מתודולוגיית הדגימה. 
  • בניגוד למה שנאמר בכתבה, הועדה לא מתחה ביקורת על המתודולוגיה של הלמ"ס, אלא המליצה על שיפור בעניין ממוקד יחיד במתודולוגיה.
  • הפער שדווח בכתבה אינו בין נתוני הועדה ונתוני הלמ"ס, אלא בין נתוני הלמ"ס ונתונים של ד"ר רז-דרור, שאיני מזלזל בכישוריו.עם זאת, לא ברור מהי המתודולוגיה בה ד"ר רז-דרור השתמש כדי לאמוד את גובה שכר הדירה. כמו כן, נתוניו ככל הנראה פחות מדוייקים עקב מדגם קטן יחסית.
  • הפער בין הנתונים של הלמ"ס והנתונים של ד"ר רז-דרור נמוך ממה שדווח בכתבה. הפער שעלול לנבוע בין ערכו של מדד המחירים לצרכן כפי שדווח ובין ערכו התיאורטי, בהנחה שהנתונים של רז-דרור נכונים ומדוייקים, הוא זניח ולא מדווח בכתבה.
  • הקביעה של דרור מרמור כי הטעות של הלמ"ס היא "חלמאית" הינה לחלוטין חסרת בסיס. הפרשנות של מעמירם ברקת על "תיבת הפנדורה" שתיפתח מבוססת על המידע המטעה בכתבה של דרור מרמור, ויש להתייחס אליה בהתאם. ההתנפלות של סטלה קורין-ליבר על המועצה הציבורית לסטטיסטיקה (שאני מכיר אישית את רוב החברים בה) מתבססת אף היא על הקביעות הלא מדוייקות של מרמור, ואינה מביאה שום טענה עניינית. איתן כבל מיהר לגזור קופון פוליטי (לפחות הוא סייג את דבריו והתנה אותם בכך שמרמור צודק בדברים שכתב – הוא לא).

מה בדיוק קרה?

הנה ציטוטים מהכתבה:

"מדד שכר הדירה של הלמ"ס, המהווה 5.7% ממדד המחירים לצרכן (האינפלציה), כלל במשך השנים טעות מובנית וכמעט חלמאית, שהטתה בפועל את המחירים בשוק השכירות באחוזים ניכרים כלפי מטה. תיקון הטעות לאחור יעלה בדיעבד גם את מדד המחירים לצרכן, וישנה את חישובי האינפלציה בשנים האחרונות… מאז 2008 נוצר פער של כ-25% בין שני סוגי המדידה. לפי החישובים החדשים, מאז 2008 עלה מדד שכר הדירה בכ-65%, לעומת עלייה כוללת של 40% לפי מדד שכר הדירה הישן, תוספת שמגלמת יותר מאחוז אינפלציה בעשור האחרון"

הכתבה ממשיכה:

"לכל מי שמכיר את שוק הדיור ברור כי דווקא חילופי שוכרים מהווים לא פעם הזדמנות להקפצת המחירים – ללא שום ביטוי לכך במדד. לפי הדוח, בדיקה שנערכה בעבר בלמ"ס העלתה ששוכרים שהחליפו דירות שילמו בממוצע 6.6% יותר משוכרים שנשארו בדירותיהם"

הכתב דרור מרמור מביא ציטוטים מדו"ח הועדה המייעצת:

"בשוק המצוי במגמה של עליית מחירים, צפויה הטיה כלפי מטה במדד שכר הדירה, הואיל וחלק מהדיירים עוברים לדירה אחרת בשל דרישה לדמי שכירות גבוהים יותר. ..לחילופין, בשוק המצוי במגמת ירידת מחירים, ההטיה עשויה להתרחש כלפי מעלה, שכן המשכיר עשוי להוריד את שכר הדירה בעת התחלפות דיירים כדי להימנע ממצב שבו הדירה נותרת ריקה"

עוד ממשיך הכתב ומסביר:

"מאז 1999 מדד מחירי הדירות (מכירה) אינו חלק ממדד המחירים לצרכן, ובמקומו מחושב השינוי במחירי שכר הדירה. בלמ"ס מדגישים כי ההטיה המוטעית לא השפיעה על כל מרכיב הדיור בשכירות, התופס נתח משמעותי של כ-24% בתוך מדד המחירים לצרכן, אלא רק על אותם 5% מהמדד שבוצעו באמצעות החישוב המוטה (החישוב המשלים מתבסס על מחירים ממוצעים)"

לכתבה עצמה נלוו גם טורי פרשנות ותגובות שעסקו באפוקליפסה של טעות החישוב שדווחה. עמירם ברקת כותב על העדכון שפותח תיבת פנדורה. סטלה קורין ליבר כותבת על המחדל של מדד הלמ"ס: בכירים שבבכירים לא עשו את עבודתם. ח"כ איתן כבל הכריז כי לחשיפה על טעות הלמ"ס יש השפעה דרמטית, וקרא לכנס את כל גורמי המקצוע בתחום הדיור כדי להבין את חישוב הנתונים השגוי של הלמ"ס.

בכתבה של גלובס הובאה תגובתו של דורון סייג, מרכז הוועדה מטעם הלמ"ס:

"הלמ"ס החלה בבדיקות לאמידה מדויקת וטובה יותר של ההטיה. לדברי סייג, "הפער שנמצא על ידי רז דרור, בשיעור של 25%, לא חושב על ידי הלמ"ס ואנחנו מבצעים כעת בדיקה טובה יותר. כרגע מדובר בבדיקה ראשונית, אבל לנו נראה שהפער שיימצא בסוף בין המדד שהוצג למדד החדש יהיה נמוך יותר".

ב-Ynet, מובאת תגובה נרחבת יותר מטעם הלמ"ס[1]:

"(אנשי המקצוע) מודעים לאי הדיוק בחישוב של מדד שכר הדירה הנכלל במדד המחירים לצרכן, והסבירו זאת בקשיי איסוף נתונים אודות שוכרים חדשים, אך עם זאת טענו כי מדובר בהשפעה מינורית: מבדיקות שונות שביצענו עולה שהשפעת שכר הדירה של שוכרים חדשים על מדד המחירים לצרכן זניחה. מסקנה זאת מוסברת בין השאר בכך שמדובר על 5.7% ממדד המחירים לצרכן וקבוצת השוכרים החדשים מהווה על סמך בדיקות ראשוניות שערכנו לא יותר מאשר 20% מתוך אוכלוסיית השוכרים"

כמו כן הסבירו כי בניגוד לנטען בפרסומים השונים, הודיעו על בדיקת הנתונים לאחור ולא על תיקונם לאחור.

עם זאת, בלמ"ס לא פסלו כי יוחלט לתקן את המדד בהמשך ואמרו: "עם סיום תוצאות הבדיקות וטיוב הנתונים לגבי שוכרים חדשים, ובהתייעצות עם הוועדה הציבורית המייעצת בנושאי בינוי, דיור ונדל"ן נחליט על המשך הטיפול".

Ynet מיידעים את קוראיהם גם על תגובת בנק ישראל, שם טוענים כי ההשפעה אינה משמעותית:

"בנק ישראל עומד בקשר רציף עם גורמי המקצוע בלמ"ס. בדיקות ראשוניות שנערכו בבנק ישראל מראות שהשפעת ההבדל במדידה על האינפלציה במדד המחירים לצרכן קטנה, ובוודאי שלא הייתה מביאה לשינוי במדיניות המוניטרית".

בואו נעשה סדר במספרים

בואו נדבר על הפער בין שתי ההערכות. לפי הלמ"ס, שכר הדירה עלה בין 2008 ל-2015 ב-40%, ולפי חישובי הועדה המייעצת  שהם לצעשה חישוביו של ד"ר רז-דרור, העלייה הייתה בגובה 65%.

במילים אחרות, אם שכר הדירה לדירה ממוצעת ב-2008 היה 1000 ₪, הרי שלפי הלמ"ס שכר הדירה ב-2015 היה 1400 ₪ ולפי הועדה הוא היה 1650 ₪. מה הפער? ההפרש בין 1650 ב-1400 הוא 250. נחלק את ההפרש הזה ב-1400 ונכפיל ב-100[2] ונקבל כי התוצאה היא קצת פחות מ-18%, ולא 25%. הפער פחות גדול ממה שנאמר בכתבה,

נמשיך. מדובר בפער הכולל שנפתח לאורך 8 שנים. מהו הפער הממוצע בשנה? זה חישוב קצת יותר טריקי: הפער הממוצע הוא השורש השמיני של 1.18. החישוב מראה כי הפער הממוצע בשנה הוא קצת פחות מ-1.8% בשנה[3]. כמו כן, חישוב דומה יראה כי לפי אומדני הועדה, העלייה הממוצעת בשכר הדירה לאורך 8 השנים האלה הוא כ-6.5%, ופי הלמ"ס העלייה הממוצעת בשנה היא כ-4.3%.

מה ההשפעה של זה על המדד? לפי מחשבון מדד המחירים של הלמ"ס, מ-2008 עד 2015 עלה מדד המחירים לצרכן בקצת יותר מ-16%. זו עליה ממוצעת של 1.7% בשנה כלומר, אם מחיר סל המצרכים שלפיהם מחושב המדד היה 1000 ₪ בתחילת שנה ממוצעת, מחירו בסוף השנה היה 1017 ₪.

שכר הדירה מהווה 5.7% מסל המצרכים[4]. נעגל את זה ל-6%. פירוש הדבר הוא שאם ערך סל המצרכים היה בתחילת השנה 1000 ₪, שכר הדירה היה 60 ₪, וערכו של שאר הסל היה 940 ₪.

לפי הלמ"ס, שכר הדירה עלה במשך השנה בכ-3.8%, ולכן בסוף השנה הוא היה כ-62 ₪. מכאן שערכו של שאר הסל בסוף השנה היה 955 ₪.

לפי הועדה המייעצת, שכר הדירה בשנה ממוצעת עלה ב-6.5%. נעגל את זה ל-7%. כלומר אם עלות הסל בתחילת השנה הייתה 1000 ₪, הרי ששכר הדירה היה, כפי שחישבנו, שכר הדירה בתחילת השנה היה, כפי שחישבנו, 60 ₪. אם הוא עלה ב-7% במשך השנה, הרי שבסופה הוא היה כ-64 ₪. שווי שאר המצרכים בסוף השנה היה 955 ₪, ולכן השווי הכולל של הסל היה 1019 ₪. אם הועדה צודקת, האינפלציה השנתית הממוצעת הייתה 1.9%, ולא 1.7%.

אני לא כלכלן, ולכן לא יודע עד כמה ההבדל הזה משמעותי. התחושה שלי היא שלא מדובר בקטסטרופה.

איך אומדים את העלייה בשכר הדירה?

אקדים ואומר כי אני לא מתמחה בדגימה. הידע שלי בתחום מוגבל למה שלמדתי בלימודי התואר הראשון, פלוס קצת ידע נוסף שרכשתי בעזרת לימוד עצמי.

אבל הנה תיאור בסיסי של התהליך. כדי לדגום, צריך להגדיר קודם כל את מסגרת הדגימה, שהיא בעצם האוכלוסייה שבה אנו מתעניינים. במקרה שלנו, אנחנו רוצים לאמוד את שכר הדירה הממוצע, ולכן יש לנו שתי מסגרות דגימה אפשריות.

אפשרות אחת היא לערוך רשימה של כל הדירות המושכרות, ואז ניקח מדגם של דירות מושכרות ונברר מה שכר הדירה עבור כל דירה שנכללת במדגם.

אפשרות שניה היא לערוך רשימה של כל משקי הבית ששוכרים דירות, לקחת מדגם מתוך משקי הבית האלה, ולברר מה שכר הדירה שהם משלמים.

יש שתי דרכים עיקריות לביצוע המדגמים. ניתן לבצע מדגם בחתך רוחבי (cross sectional), כלומר לקחת כל חודש מדגם חדש, או באופן אורכי (longitudinal), כלומר לקחת מדגם ולעקוב אחריו לאורך זמן.

לכל שיטה יש יתרונות וחסרונות, שלא אפרט כאן[5].

אני מציע שכעת תפסיקו את הקריאה לדקה או שתיים, ותחשבו מה אתם הייתם עושים אם הייתם מתבקשים לבצע את המדגם: האם הייתם דוגמים דירות או שוכרים? האם הייתם לוקחים כל חודש מדגם חדש, או שהייתם לוקחים מדגם ועוקבים אחריו לאורך זמן? אולי תחשבו על דרך אחרת?

מסתבר שהדברים לא כל כך פשוטים. קשה מאוד, אולי בלתי אפשרי, לערוך רשימה של כל הדירות המושכרות. קשה מאוד, אולי בלתי אפשרי, לערוך רשימה של כל משקי הבית המתגוררים בדירות שכורות. בלמ"ס בחרו בדרך ביניים. למעוניינים, הנה לינק למסמך המתאר את מתודולוגיית חישוב סעיף הדיור במדד המחירים לצרכן (קישור לקובץ pdf). אפשר להתווכח על מתודולוגיית הדגימה, אך רצוי מאוד להבין את הנושא לפני שמחווים דיעה.

מה אומר דו"ח הועדה המייעצת?

אמנם בגלובס לא טרחו לתת הפניה אל הדו"ח אבל חיפוש מהיר בגוגל מצא אותו (קישור לקובץ pdf).

כדאי קודם כל לעיין בעמוד 2 בו תמצאו את רשימת חברי הועדה. בוועדה יש 35 חברים, שהם נציגים ממגוון רחב של מוסדות ממשלתיים ואחרים, כולל בנק ישראל, משרד האוצר, משרד הבינוי והשיכון, המועצה הלאומית לכלכלה, משרד המשפטים, וכן, גם 9 נציגים של הלשכה המרכזית לסטטיסטיקה. גילוי נאות: אני מכיר אישית שלושה חברים בוועדה.

ההתייחסות של הועדה לנושא מדד שכר הדירה נמצאת בעמודים 37-39. הנתון של עליית המחירים ב-65% אינו כתוב במפורש בדו"ח והוא ככל הנראה נגזר מהגרף שבעמוד 37. לדעתי הגרף מראה שינוי הקרוב יותר ל-60% מאשר ל-65%, (ראו הצגה מוגדלת של הגרף בדה-מרקר) אבל בואו נניח לזה. בעיה יותר גדולה בגרף, לדעתי, היא שהוא לא מציג סטייות תקן או רווחי סמך לאומדנים, לא עבור הנתונים של רז-דרור ולא עבור נתוני הלמ"ס.[6]

בשולי הגרף מצויין כי מקור הגרף במסמך של ד"ר עופר רז-דרור מ-2017. לא הצלחתי לאתר את המסמך המקורי. בדה-מרקר מציינים כי המדגם של רז-דרור קטן יחסית, מה שאומר כי סטיית התקן שלו (טעות הדגימה) יותר גדולה. לא הצלחתי למצוא מה הייתה שיטת הדגימה של ד"ר רז-דרור.

המלצות הועדה בנושא הן לשפר את המעקב אחר דירות בשכירות בעת תחלופת שוכר, וכן לפרסם מדדים לשכר-דירה ואת שכר הדירה הממוצע בפילוח לפי מחוזות וערים גדולות. בניגוד למה שדווח בגלובס, אין המלצה לתקן את המדדים לאחור, ואין המלצה לשנות את מתודולוגיית הדגימה.

משפט מסכם אחרון: תמיד כדאי לקרוא בביקורתיות כתבות, דו"חות, כל דבר בעצם. תהיו ספקנים.

 


הערות
  1. לא מצאתי בגלובס []
  2. חישובי אחוזים של בי"ס יסודי []
  3. ידע בחישובי אחוזים של בית ספר יאפשר לכם לבדוק את התוצאה. תתחילו מ-100, תוסיפו לו 1.8%. לתוצאה שקיבלתם תוסיפו שוב 1.8%, וכך הלאה, 8 פעמים []
  4. לפי הנתון בכתבה בגלובס []
  5. בין היתר, כיוון שאני לא מומחה בתחום []
  6. אכתוב על עניין זה בהרחבה בקרוב []

סטטיסטיקה רעה: אי אבחנה בין מתאם לסיבתיות

בנושא המתאם והסיבתיות דנתי רבות[1]. יש הרבה דוגמאות משעשעות: מתאם בין יבוא לימונים לבטיחות בדרכיםבין צבעה של מכונית והסיכוי כי תהיה מעורבת בתאונת דרכים, ובין מחזורי הירח ומחירי המניות. קוריוזים כאלה בדרך כלל לא גורמים נזק[2]. אף אחד לא יציע להטיל מגבלות על יבוא לימונים, או לצבוע מכוניות שחורות בצבע אחר. למעוניינים יש אתר שלם וספר שעוסק בכך.

ברשותכם אעבור לדוגמאות יותר רציניות.

דוגמא מפורסמת קשורה לגדול הסטטיסטיקאים, רונלד פישר, שהיה מעשן כבד. באמצע שנות החמישים של המאה העשרים, התגלו המתאמים הראשונים בין העישון ובין הסיכוי לחלות בסרטן הריאות. תלמידיו של פישר פנו אליו, וביקשו ממנו שינסה לעשן פחות למען בריאותו. הם נימקו את בקשתם במתאם הסטטיסטי שזה עתה התגלה. פישר דחה אותם, בנימוק שהמתאם עצמו אינו מראה סיבה ותוצאה, ואף הביע את דעתו זו בכתב העת החשוב Nature. ייתכן, אמר פישר, כי מחלת הסרטן גורמת בשלב הראשון של המחלה לצורך בניקוטין, המתבטא בכך שהחולה מעשן, ורק אחר כך מתפתחים הגידולים. פישר נפטר בשנת 1962. רק בשנות השבעים של המאה העשרים הוכיחו המדענים כי צריכה מוגברת של ניקוטין אכן גורמת לעליית הסיכון לחלות בסרטן הריאות.

טענה אחרת שהועלתה היא כי צמחונות אצל נערות בגיל ההתבגרות גורמת לאנורקסיה, וזאת על סמך מתאם גבוה בין שתי התופעות. ניתוח יותר זהיר הראה כי אורח חיים צמחוני לכשעצמו לא בהכרח גורם לאנורקסיה, אך בשילוב עם גורמי סיכון נוספים המחלה עלולה להתפתח.

הסקת סיבתיות עקב קיומו של מתאם עלולה בקלות להגיע לאבדן חיי אדם. הדוגמא המפורסמת ביותר (ואחת המזיקות ביותר) היא הטענה שחיסונים גורמים לאוטיזם, וזאת על פי מחקר גרוע במיוחד[3]. מאמר מאת אנדרו וייקפילד[4] , שפורסם בכתב העת Lancet בשנת 1998, הראה מתאם בין מתן חיסון MMR לילדים ובין אבחון אוטיזם אצל ילדים שחוסנו. זה הספיק כדי להצית תנועה רחבה של התנגדות לחיסונים, שקיימת עד היום. אי מתן חיסונים מוביל להתפרצות מגיפות ולמקרי מוות שהיו יכולים להימנע.

ב-2010 התפרסם מחקר שמצא כי צריכת חומצות שומניות כגון אומגה 3 יכולה להפחית את הסיכון להתקף לב. הטענה התבססה על מספר מחקרים תצפיתיים, וכן מספר ניסויי מעבדה. התברר כי לחומצות שומניות יש תכונות אנטי דלקתיות, וכי יש מתאם שלילי בין רמת הצריכה שלהן ובין רמת הטריגליצרידים בדם. כמו כן יש מתאם בין שלילי בין רמת הטריגליצרידים ובין הסיכון להתקף לב. מכאן הדרך קצרה להשערה כי צריכת חומצות שומניות תוביל להורדת הסיכון להתקף לב. זו תיאוריה יפה, אך היא מבוססת על מתאמים. היא התבררה כלא נכונה. בשנת 2013 התפרסמו התוצאות של מחקר קליני מבוקר, בו המטופלים צרכו, על פי הקצאה רנדומלית, שמן דגים (העשיר באומגה 3) או פלסבו. המחקר הראה כי אין עדות לאפקט חיובי של צריכת שמן דגים.

הדוגמא הטריה ביותר היא המחקר PURE, שתוצאותיו החלו להתפרסם לפני מספר חודשים. בין היתר, טענו החוקרים כי "יש מתאם גבוה בין צריכה גבוהה של פחמימות לשיעורי התמותה, בעוד שצריכת שומנים קשורה לשיעורי תמותה נמוכים". במחקר יש בעיות מתודולוגיות רבות המעמידות בספק רב את עצם קיומו של המתאמים המתוארים, אולם זה לא הפריע לעיתונים לצאת בכותרות כמו "שומן מפחית את הסיכון לתמותה", "שומן לא מזיק, הבעיה עם פחמימות", ו-"תזונה דלת שומן מעלה סיכון למוות מוקדם". שוב, פרשנות מוטעית של מתאם רשלני עלולה להביא להגברה של צריכת שומן, שתוביל לשיעורי תמותה גבוהים יותר ממחלות לב ומחלות נוספות.

כפי שכתב סטיבן ג'יי גולד בספרו The Mismeasure of Man: "ההנחה חסרת התוקף לפיה ממתאם נובעת סיבתיות היא ככל הנראה אחת מתוך שתיים או שלוש השגיאות החמורות ביותר והנפוצות ביותר בשיקול הדעת האנושי".


רשימות נוספות בסדרה:


הערות
  1. זה היה הפוסט הראשון שהופיע בנסיכת המדעים! []
  2. אם כי עלולים להיגרם הפסדים כספיים למי שישקיע את כספו על פי מחזורי הירח []
  3. שתוצאותיו התבררו לאחר מכן כמזוייפות, אבל גם אם היו אמיתיות לא היה ניתן להסיק מהן דבר []
  4. שהיה ד"ר לרפואה עד שרישיונו נשלל []

סטטיסטיקה רעה: פרשנות לא נכונה של ה-p-value ואי הבחנה בין תוצאות מובהקות לתוצאות משמעותיות

כבר הסברתי כאן באריכות מהו ה-p-value, ומה הוא לא. לא אחזור כאן על כל הפרשנויות המוטעות למשמעותו של ה-p-value, אך אציין את המובן מאליו – פרשנות לא נכונה של ה-p-value והתרכזות בלעדית בשאלה האם תוצאה היא מובהקת או לא, מהווה סטטיסטיקה רעה שעלולה להביא לתוצאות חמורות.

האיגוד האמריקני לסטטיסטיקה (ASA) פירסם בראשית 2016 הצהרה בדבר המובהקות הסטטיסטית ו-p-values ,[1] ובה מפורטים שישה עקרונות שישפרו את הביצוע והפרשנות של מחקרים כמותיים. ASA מציינים כי ה-p-value אמנם מספק הערכה עד כמה הנתונים אינם עולים בקנה אחד עם מודל סטטיסטי ספציפי, אך אינו מודד את ההסתברות כי השערת האפס נכונה[2] או את ההסתברות כי התוצאות התקבלו במקרה. ASA מבהירים כי אין להסיק מסקנות מדעיות, או לקבל החלטות עסקיות או החלטות בדבר מדיניות על סמך ה-p-value בלבד. ה-p-value  לכשעצמו אינו מדד טוב של ראיות (evidence) בעד או נגד השערה או מודל. וכמובן, מובהקות סטטיסטית אינה מעידה או מודדת את גודלו של האפקט הנצפה או חשיבותו.

הבאתי כאן בעבר מספר דוגמאות היפותטיות ואמיתיות בדבר פרשנות לקויה של p-values, והתעלמות מהמשמעות של האפקט הנצפה או חשיבותו. חברת תרופות עלולה להיאחז בתוצאה מובהקת של ניסוי קליני כדי להחליט על המשך הפיתוח של תרופה חסרת תועלת ולבזבז מאות מיליוני דולרים. חוקרים מכובדים פרסמו תוצאות מובהקות של מודל רגרסיה שהריצו, בלי להתייחס לכך שאין משמעות מעשית לתוצאות וגרוע מכך, לא שמו לב כי אחת התוצאות היא אבסורדית. חוקרים אחרים הגיעו למסקנה המובהקת כי במשפחות שבהן שלושה בנים, ההסתברות שהילד הרביעי יהיה גם הוא בן גבוהה יותר. המשמעות של התוצאה היא שכל שנתיים נולד בן אחד יותר ממה שהיה "צריך" להיות אילו ההסתברות לבן רביעי לא הייתה שונה, כלומר ההבדל בין ההסתברות התיאורטית וההסתברות הנצפית ללידת בן רביעי לא היה משמעותי.

אבל הבעיה היא ככל הנראה רחבה יותר וקיימת במחקרים בתחומים רבים.

ב-1996, החוקרים מקלוסקי וזיליאק בדקו 182 מחקרים שהתפרסמו בכתב העת American Economic Review בשנות ה-80 של המאה העשרים והשתמשו ברגרסיה ככלי ניתוח סטטיסטי. הם מצאו כי 70% מהמחקרים לא הבדילו בין מובהקות סטטיסטית למשמעות כלכלית. השניים מציינים גם כי ספרי הלימוד בכלכלה לא דנים בהבדל בין תוצאה מובהקת לתוצאה משמעותית.[3]  הם חזרו על המחקר כעבור עשר שנים, ומצאו כי לא חל שיפור. מתוך 137 מחקרים שפורסמו בשנות ה-90, 82% לא הבחינו בין מובהקות סטטיסטית ומשמעות כלכלית. מאחר ולכלכלנים יש השפעה רבה על החלטות בדבר מדיניות ציבורית, לסטטיסטיקה רעה כזו יש השפעה ישירה על כל אחד מאיתנו.

גם בתחום כלכלת הבריאות יש בעיה. הבלוגר סם ווטסון, אחד הכותבים בבלוג העוסק בכלכלת בריאות, סקר[4] את גיליון מאי 2017 של כתב העת Health Economics. בתשעת המאמרים שהופיעו בגיליון, הוא מצא שמונה מקרים בהם השתמשו ב-p-value באופן בלעדי כדי לקבוע האם קיים אפקט. וכאשר מיישמים סטטיסטיקה רעה לקביעת מדיניות ציבורית בתחום הבריאות, יש לכך השפעה על חיי אדם.

לסיכום: ה-p-value הוא כלי יעיל לבדיקת מובהקות סטטיסטית, כאשר שיטת ניתוח הנתונים ורמת המובהקות של הניתוח נקבעות מראש. עם זאת, ה-p-value אינו מדד טוב לטיבם של הנתונים (ראיות), לגודלו של האפקט הנצפה, משמועות או חשיבותו.

נסיים בדבריו של רון וסרשטיין: “The p-value was never intended to be a substitute for scientific reasoning" – ה-p-value מעולם לא נועד להיות תחליף לחשיבה מדעית.


רשימות נוספות בסדרה:


הערות
  1. קישור לקובץ pdf []
  2. אין דבר כזה []
  3. המצב בספרי הלימוד בסטטיסטיקה אינו טוב יותר, לצערי []
  4. אמנם באופן לא שיטתי []

בעיית ימי ההולדת

שוב פירסמתי סקר בטוויטר שמאחוריו מסתתרת רשימה על בעיה מעניינת בהסתברות – והפעם בעיית ימי ההולדת. הנה השאלה והתפלגות התוצאות:

בואו ננסה להבין ביחד מה קורה כאן. לשם כך, כרגיל, צריך להניח הנחות.

ההנחה הראשונה היא שאין תלות בין תאריכי הלידה של שני אנשים שונים. כלומר, אם אתם יודעים, למשל, שאני נולדתי ב-13 באוקטובר[1], זה לא אומר לכם כלום על תאריך ההולדת של דונלד טראמפ, וגם לגבי תאריך ההולדת של כל אדם אחר. שימו לב שבהנחה הזו אנו מוציאם מהמשחק אפשרות של תאומים, שלישיות וכולי.

ההנחה השנייה היא שיש בשנה 365 ימים, ויש לכן 365 ימי הולדת אפשריים. ההנחה הזו מאפשרת לי להתעלם מכל האנשים המעצבנים שנולדו ב-29 לפברואר.

ההנחה השלישית היא שהתפלגות ימי ההולדת היא אחידה. פירוש הדבר הוא שהסיכוי כי אדם שבחרתם באופן מקרי נולד ב-1 בינואר שווה לסיכוי שהוא נולד ב-35 במאי, או בכל יום אחר בשנה, והסיכוי הזה הוא 1/365.

כרגיל, אפשר להתווכח על ההנחות, ולהחליף כל הנחה בהנחה אחרת, אבל זה רק יגרום לחישובים יותר מסובכים, בעוד שהתשובות המהותיות לא ישתנו. אם החישובים לא מדברים אליכם, דלגו עליהם, והתרכזו בעקרונות ובתוצאות. כדאי לכם להגיע עד הסוף, כי יש גם סרט.

ועכשיו נענה לשאלות. אם יש 23 אנשים באוטובוס, מה ההסתברות שלשניים מהם יש יום הולדת באותו יום?

אפשר לשאול את השאלה הזו בצורה אחרת: מה המספר המינימלי של אנשים באוטובוס כדי שההסתברות שלשניים מהם יש יום הולדת באותו יום תעלה על 50%?

קודם כל אסביר מדוע יש מספר אנשים שבו ההסתברות שלשניים מהם יש יום הולדת באותו יום עולה על 50%.

ובכן, אם יש באוטובוס רק בן אדם אחד (הנהג, אני מקווה), ההסתברות כי יש באוטובוס שני אנשים שנולדו באותו יום היא כמובן 0.

אם יש באוטובוס שני אנשים, ההסתברות ששניהם נולדו באותו יום היא 1/365. אסביר: ההסתברות ששניהם נולדו ב-1 בינואר היא 1/365 כפול 1/365. ההסתברות ששניהם נולדו ב-2 בינואר היא שוב 1/365 כפול 1/36, וכן הלאה. נחבר 1/365 כפול 1/365 לעצמו 365 פעמים, ונקבל 1/365.

אם יש באוטובוס 3 אנשים ההסתברות ששניים מהם נולדו באותו יום גבוהה יותר. ההסתברות שהנהג והנוסע הראשון נולדו באותו יום היא כאמור 1/365, אבל יש לקחת בחשבון גם את האפשרות שהנהג והנוסע השני נולדו באותו יום, וגם את האפשרות ששני הנוסעים נולדו באותו יום. התוצאה אמנם אינה חיבור פשוט של כל שלושת ההסתברויות[2], אבל אני מקווה שברור כי היא גבוהה יותר.

אם נוסיף עוד נוסע ועוד נוסע ועוד נוסע ההסתברות שיש באוטובוס שני אנשים שנולדו באותו יום תלך ותגדל.

אם יהיו באוטובוס 366 איש[3], ההסתברות שבאוטובוס יש שני אנשים שחולקים יום הולדת מגיעה ל-100%: במקרה הכי גרוע יש 365 אנשים שכל אחד נולד ביום אחר בשנה, ואז יום ההולדת של האדם ה-366 חייב להיות זהה ליום הולדת של אחד מהאחרים[4]. הטיעון הזה, אגב, מבוסס על טענה מתמטית המכונה "עקרון שובך היונים".

ובכן, ההסתברות של המאורע שלנו מתחילה ב-0, גדלה ככל שנוספים אנשים לאוטובוס ומגיעה בסוף ל-100%. לכן חייבת להיות נקודה בה ההסתברות הזו תעבור את ה-50%. הנקודה הזו היא, באופן מפתיע, כאשר מספר האנשים באוטובוס מגיע ל-23. אני לא מתכוון לעבור כאן על כל החישוב, אבל  יש ברשת מחשבון לחישוב ההסתברויות , שם גם יש הסבר כיצד ההסתברות מחושבת. 23 הוא מספר יחסית קטן של אנשים, והאינטואיציה של רוב בני האדם[5] אומרת להם כי זה מספר קטן מדי של אנשים, יחסית למספר ימי ההולדת האפשריים. מסיבה זו בעיית ימי ההולדת מכונה "פרדוקס ימי ההולדת", למרות שאין כאן שום סתירה לוגית.

אם תביטו שוב בתוצאות הסקר, אתם עלולים לחשוב כי כמעט מחצית מהמשיבים (49%) ענו את התשובה הנכונה. אבל זה לא נכון. זו התשובה הנכונה לשאלה שדנתי בה עד עתה, אבל זו לא התשובה לשאלה ששאלתי.

אני שאלתי מה ההסתברות כי בין 22 הנוסעים האחרים יש אדם שחולק איתי יום הולדת. במילים אחרות, מה ההסתברות שיש באוטובוס עוד אדם שנולד ב-13 באוקטובר. התשובה לשאלה הזו היא בערך 5%. כדי שההסתברות שמישהו באוטובוס חולק איתי יום הולדת תהיה בערך 50%, צריכים להיות עליו 253 אנשים. החישוב כאן יותר פשוט מהחישוב של השאלה הקודמת, ולכן אסביר אותו במפורט. מי שלא מתעניין בחישובים יכול לדלג פיסקה.

ההסתברות כי הנוסע הראשון מבין 22 הנוסעים האחרים נולד ב-13 באוקטובר היא 1/365, ולכן ההסתברות כי לא נולד ב-13 באוקטובר היא 364/365. באופן דומה, ההסתברות כי הנוסע השני לא נולד ב-13 באוקטובר גם היא 364/365, וכך הלאה לכל שאר הנוסעים. בגלל אי התלות בין ימי ההולדת, ההסתברות כי אף אחד מבין 22 הנוסעים האחרים היא לכן המכפלה של 364/365 בעצמו 22 פעמים. זה יוצא 0.941. מכאן שההסתברות כי לפחות אחד מבין ה-22 נולד ב-13 באוקטובר היא 1-0.941=0.058, או, בקירוב טיפה גס, בערך 5%. שליש מהמשיבים לסקר בחרו את התשובה הנכונה.[6]

יש הרבה פולקלור מסביב לבעיית ימי ההולדת. בספר הקלאסי Lady Luck מספר המחבר, המתמטיקאי וורן וויבר, כי השתתף בארוחה עם מספר גנרלים בזמן מלחמת העולם השנייה. הוא סיפר להם על בעיית ימי ההולדת, וכצפוי, הטענה כי אם יש בחדר 23 אנשים אז הסיכוי ששניים מהם חולקים יום הולדת היא כ-50% לא תאמה את האינטואיציה של חלק מהנוכחים. מכיוון שבארוחה השתתפו 22 איש, הם החליטו להעמיד את הטענה למבחן: כל אחד מהמשתתפים אמר מהו יום הולדתו, ולא נמצאו שני סועדים עם יום הולדת משותף. אז התערבה בשיחה המלצרית שנכחה בחדר ואמרה "סלחו לי, אבל אני האדם ה-23 בחדר, ויום הולדתי הוא ה-17 במאי, כמו יום ההולדת של הגנרל היושב שם".

מבין 45 הנשיאים של ארצות הברית, הנשיאים פולק והרדינג נולדו שניהם ב-2 בנובמבר. הנשיאים פילמור וטאפט מתו שניהם ב-8 במרץ, ושלושת הנשיאים אדמס, ג'פרסון ומונרו מתו ב-4 ביולי. אף נשיא לא חולק איתי יום הולדת.

ג'וני קארסון, המנחה ההמיתולוגי של ה-Tonight Show, התעמק גם הוא בבעיה. בשידור ב-6.2.1980 הוא סיפר לאורח שלו כי מספיק שיהיו 35-40 אנשים בחדר, כדי שיימצאו ביניהם שני אנשים שחולקים יום הולדת משותף.  (אם יש בחדר 35 אנשים, ההסתברות היא כ-85%. כשיש 40 אנשים ההסתברות היא כמעט 90%). המרואיין לא השתכנב וקארסון החליט לערוך הדגמה. הוא שאל גברת מהקהל מה תאריך הלידה שלה, והיא ענתה שיום הולדתה הוא ב-9 לאוגוסט. התברר כי אין עוד אדם בקהל שזהו יום הולדתו. קארסון החליט לנסות שוב. הוא בחר מישהו אחר מהקהל, ויום הולדתו היה ה-9 באפריל. שוב התברר כי אין בקהל אדם נוסף שזהו יום הולדתו. קארסון המתוסכל ניסה שוב, הפעם עם יום ההולדת של עצמו, ה-23 באוקטובר. שוב לא היה בקהל אדם נוסף שזהו יום הולדתו. הפעם היו בקהל שני אנשים שחלקו עימו יום הולדת.[7] מי שהגיע עד לכאן כבר הבין כי קארסון חיפש תשובה לשאלה הלא נכונה. בקהל, אגב, היו כ-500 איש, מה ששמבטיח בודאות כי היו שם לפחות שני אנשים עם יום הולדת משותף. אתם מוזמנים לצפות בהקלטת השידור.


הערות
  1. אל תשכחו לציין את זה בלוח השנה שלכם []
  2. כי יש חפיפה בין המאורעות []
  3. זה אוטובוס ממש גדול []
  4. כי הנחנו שאין 29 בפברואר []
  5. כן, כן, גם שלי []
  6. ומי שענה "אחר" בגלל שהתוצאה יותר קרובה ל-6% מאשר ל-5%, גם זה סבבה []
  7. תודה לגיל גרינגרוז ששהפנה את תשומת ליבי []