חיפוש באתר

קישורים

RSS סטטיסטיקה ברשת

עמודים

קטגוריות

תגיות

ארכיב עבור תגית מתמטיקה

מודלים ואלגוריתמים: מה ההבדל ומה הבעיה

לאחרונה השתתפתי בכמה דיונים בפייסבוק שהגיעו למבוי סתום. ניסיתי להבין למה זה קורה ולבסוף הבנתי: אני דיברתי על מודלים והם דיברו על אלגוריתמים.

לכאורה לא צריכה להיות שום בעיה. מודל זה דבר אחד, אלגוריתם זה דבר אחר. אם תחפשו בגוגל מודל, לא תמצאו שום מקום שיטען כי מודל הוא אלגוריתם. גם ההיפך נכון. אז מה קורה כאן?

כדי להסביר למה אני מתכוון, יש צורך במספר שלבים. תחילה אתן הסבר קצר וכללי (ויש יאמרו: פשטני) מהו מודל ומהו אלגוריתם. אחר כך אסביר ביותר פירוט מהו מודל סטטיסטי, ואיך הוא מתקשר למושג האלגוריתם. לבסוף אסביר מנין נובע הבלבול בין שני המושגים, לפחות בהקשר הסטטיסטי, ואצביע על בעיה העולה מכך.

מהו מודל?

מודל הוא תיאור תיאורטי של תופעה מציאותית. המציאות היא בדרך כלל מורכבת, והמודל מנסה להתרכז בגורמים החשובים שבעזרתם אפשר לתאר את התופעה, לאפיין אותה, ובעיקר לחקור אותה. המודל כמובן אינו תיאור מדוייק לגמרי של המציאות, אבל הוא מספיק טוב כדי לתת תשובה אמינה לשאלות מעניינות. כל מודל מתבסס על הנחות. מודל טוב מסוגל להסביר תצפיות על המציאות ולחזות תצפיות עתידיות. מודל צריך להיות ניתן לפירוש, כלומר אינו קופסה שחורה. מודל טוב הינו חסכוני – כלומר פשוט ככל האפשר. מודל יכול להיות פיזי, למשל חלקיק הטס לו בתוך מאיץ חלקיקים, או עכבר – במדעי החיים או ברפואה. יש מודלים המבוטאים על ידי משוואות מתמטיות.

מהו אלגוריתם?

אלגוריתם הוא סדרה של הוראות לביצוע משימה מסויימת, כך שהמשימה תסתיים במספר סופי של צעדים. מתכון להכנת עוגה הוא אלגוריתם. כאשר למדתם בבית הספר (או ניסיתם ללמוד) חילוק ארוך, למדתם אלגוריתם. לכל אלגוריתם יש קלט. במקרה של הכנת עוגה, אלה החומרים שמשמים להכנתה: קמח, ביצים וכולי. אולם כאשר הדברים על אלגוריתמים מדברים בדרך כלל על אלגוריתמים מתמטיים, והקלט שלהם הוא בדרך כלל מספרים/נתונים. התוצר של האלגוריתם נקרא פלט. פלט יכול להיות למשל מנה של עוגה, או המנה המתקבלת כתוצאה של חילוק ארוך. כמו למודל, גם לאלגוריתמים יש הנחות, ויש גם תכונות, ואני לא אכנס כאן לפירוט מכיוון שידיעותיי בנושא מוגבלות.

מהו מודל סטטיסטי?

מודל סטטיסטי הוא מודל מתמטי הכולל בתוכו אלמנט מקרי. בדרך כלל המודל עוסק במדגם מתוך אוכלוסייה, ומתאר תכונות של האוכלוסייה וקשרים אפשריים ביניהם.

אתן כאן דוגמה למודל סטטיסטי פשוט, מודל הרגרסיה הלינארית. זהו אחד המודלים הפשוטים ביותר בסטטיסטיקה. יהיו נוסחאות, אך לא צריך להיבהל מהן. אלה רק אותיות וסימנים מתמטיים כמו חיבור וכפל. אסביר בדיוק ובפשטות מה זה כל דבר. הנה המודל:

למודל. (כשהייתי בשנה ב', כתבתי בעצמי תכנית מחשב כזו, בשפת פורטרן).

 

מה רואים כאן?

בשורה/נוסחה הראשונה יש אותיות לטיניות גדולות: X ו-Y. אלה הם המשתנים של המודל. המודל מנסה להסביר את הקשר בין המשתנים. X יכול להיות למשל המשקל של אדם, ו-Y יכול להיות הגובה שלו. אפנה את תשומת ליבכם לכך שהמודל מניח כי X ו-Y הם משתנים כמותיים ורציפים, למרות שזה לא כתוב במפורש בנוסחה. X ו-Y יכולים להיות משקל, גובה, גובה המשכורת, דברים כאלה, אבל לא מספר ההתקפים שהיו לחולה במשך שנה, לא מספר נעליים, ובטח לא מספר קו האוטובוס שעובר בשכונה.

נמשיך בהסבר: בנוסחאות יש גם אותיות יווניות קטנות: אלפא, ביתא, וגם סיגמה. אלה הם הפרמטרים של המודל. הם מתארים את הקשר בין המשתנים X ו-Y.

בעולם מושלם, אלפא וביתא לבדם היו מספיקים לתאר את הקשר בין X ל-Y. קח את המשקל של אדם בקילוגרמים (X), תכפיל אותו ב-0.5, תוסיף 136, ותקבל את הגובה שלו בסנטימטרים.[1] קשר כזה בין המשתנים נקרא "קשר לינארי". זוהי ההנחה השניה של המודל: בעולם מושלם, הקשר בין X ל-Y הוא לינארי.

אבל העולם אינו מושלם. בעולם מושלם הייתי צריך להתנשא לגובה של 188 ס"מ, אבל גובהי רק 180. האות e מבטאת את ההבדל בין העולם המושלם והעולם האמיתי – במקרה שלי 8 ס"מ.

אם יש לכם קובץ עם הרבה נתונים של משקל וגובה, יהיו לכם גם הרבה ערכים של e. המודל מניח כי אם תציירו גרף של כל הערכים של e תקבלו צורת פעמון – התפלגות הערכים של e היא נורמלית. ההנחה הזו – השלישית במודל שלנו, מתוארת בשורה השניה על ידי הסימן ~ והאות N. המודל מניח עוד הנחה על הפעמון: המרכז שלו, הממוצע של כל הערכים של e, נמצא ב-0. יהיו ערכים חיוביים של e, יהיו גם ערכים שליליים, והם יקזזו אחד את השני. הפרמטר סיגמה מבטא את צורת הפעמון. אם לסיגמה יש ערך גבוה יחסית, נקבל פעמון נמוך ורחב. זה אומר שיש הרבה ערכים של סיגמה שרחוקים מאפס. יש הרבה טעויות גדולות, לשני הכיוונים. אם לסיגמה יש ערך נמוך, הפעמון הוא גבוה וצר, כלומר רוב הטעויות הן קטנות וקרובות יחסית לאפס. ככל שסיגמה קרוב יותר לאפס, העולם "יותר מושלם". אם סיגמה שווה לאפס – זה אומר שאנחנו באמת בעולם מושלם (לא יקרה).

אציין שיש למודל הזה עוד הנחה אחת, אך היא יותר טכנית במהותה ולא אתאר אותה כאן.

עד כאן תיאור המודל.

נניח עכשיו כי יש לנו קובץ, ובו יש לנו נתונים על גובהם ומשקלם של מדגם של אנשים. אנחנו יכולים לשאול הרבה שאלות מעניינות. למשל: האם המודל של רגרסיה לינארית מתאים לנתונים? האם ההנחות של המודל מתקיימות? האם הקשר בין הגובה למשקל הוא לינארי? ואם לא, עד כמה הקשר קרוב לקשר לינארי? מהם הערכים של אלפא, ביתא וסיגמה? ועד כמה הם שונים באופן מובהק מאפס? ועוד הרבה שאלות אחרות. יש דרכים לקבל תשובות לשאלות האלה, כמובן לא בוודאות מלאה, שהרי מדובר כאן במדגם.

לערכים של אלפא ביתא וסיגמה, למשל, אפשר לקבל אומדנים. מייד יופיעו כאן נוסחאות לחישוב האומדנים לאלפא ולביתא. לא להיבהל, הן ממש לא חשובות לדיון שלנו, אני מציג אותן רק למקרה שמישהו יפקפק בקיומן. תסתכלו להן בעיניים ותעברו הלאה:

למודל. (כשהייתי בשנה ב', כתבתי בעצמי תכנית מחשב כזו, בשפת פורטרן).

 

מה שחשוב כאן זה להבין שהנוסחאות האלה מסבירות איך לקחת את הנתונים, שמסומנים על ידי x ו-y, ולבצע איתם חישובים שיתנו לנו אמדנים לערכים של אלפא וביתא. הנוסחאות האלה מגדירות אלגוריתם. הנתונים הם הקלט, האמדנים הם הפלט. אפשר לכתוב תכנית מחשב שתבצע את החישובים האלה עבורכם, ועוד הרבה חישובים אחרים, שיענו לשאלות אחרות שאפשר לשאול בקשר למודל. (כשהייתי בשנה ב', כתבתי בעצמי תכנית מחשב כזו, בשפת פורטרן).

ככלל, לכל מודל סטטיסטי מתלווים כמה אלגוריתמים, שמגדירים כיצד למצוא את התשובות לשאלות שאפשר לשאול על המודל.

מה בקשר להיפך? האם לכל אלגוריתם יש מודל שעומד בבסיסו (לא בהכרח סטטיסטי)? האמת היא שאני לא בטוח בתשובה. אני מזמין את מי שיודע (או חושב שהוא יודע) לענות לשאלה מעניינת זו.

אז מה הבעיה?

הבעיה הגדולה היא שהאלגוריתם עיוור למודל. הנוסחאות שהצגתי לחישוב האומדנים לאלפא וביתא "לא יודעות" שהן נובעות מהמודל, ולא איכפת להן אם ההנחות של המודל מתקיימות או לא. אתם יכולים, למשל, לקחת קובץ נתונים על שחקני כדורסל, להחליט ש-x הוא מספר הנעליים של שחקן, ו-y הוא מספר החולצה שלו. הנוסחאות יעבדו. תכנית המחשב לא תוציא הודעת שגיאה. פייתון לא יקרוס.

וזה נכון גם לאלגוריתמים אחרים. אתם יכולים גם לחשב את מקדם המתאם בין מספרי הנעליים של השחקנים ומספרי החולצה שלהם. או לחשב לכל שחקן את הממוצע של מספר החולצה ומספר הנעליים. נשמע מופרך? בפורום סטטיסטיקה והסתברות בפייסבוק היו כאלה חשבו שלחשב את מקדם המתאם בין המספר הסידורי של סרט בדטהבייס ובין הרייטינג הממוצע שלו זה בסדר גמור. ובפורום ML הסבירו לי שאין שום בעיה לשקלל את משקלו של אדם עם מנת המשכל שלו (אם רק עושים סקיילינג. אל תשכחו לעשות סקיילינג!). וכשטענתי שאין משמעות לשקלול של משקל הגוף ומנת המשכל, ענה לי סניור דטה סיינטיסט אחד כי "המשמעות אינה חשובה".

נכון שאפשר להריץ את כל האלגוריתמים האלה בלי להבין את המתמטיקה שעומדת בבסיסם. אפשר "לבנות מודל" – זאת אומרת, לבנות איזשהו אלגוריתם קצת יותר מסובך מאבני בניין של אלגוריתמים יותר פשוטים. אפשר לקחת את כל הנתונים ולזרוק אותם ל-xgboost . אני יודע שיש אנשים שעושים את זה, ומה איכפת להם? אם זה יביא לחברה שלהם עוד 30,000 דולר, זה מה שחשוב, ואני לא אומר שזה לא חשוב.

אני חושב שהמשמעות חשובה. אני חושב שאם אתה משתמש במודל, אתה צריך להבין מה הפירוש של המודל, לדעת מה ההנחות שעומדות בבסיסו, וכן, גם לדעת מה המגבלות שלו. ומי שלא מבין, ולא יודע, ולא איכפת לו, הוא מהנדס במקרה הטוב, טכנאי במקרה הפחות טוב, ובשום אופן לא מדען. במה שהוא עושה יש אכן הרבה דטה, אבל מעט מאוד סיינס. וצריך להכיר בזה. וכל אחד צריך לשאול את עצמו מה הוא באמת.


הערות
  1. את הערכים המספריים שנתתי כאן לאלפא וביתא חישבתי על פי קובץ הנתונים body, בו השתמשתי גם ברשימה על ה-PCA []

כמה עובדות על פיי

לפני שבועיים פרסמתי כאן חידון על המספר פיי – π. לאלה מכם שלא ישנו בלילות בציפיה לתשובות (וגם לאלה שלא), הנה התשובות לרוב השאלות בחידון. אני מקווה שתסלחו לי , אבל מספר הספרות שחושב אחרי הנקודה העשרונית  של פיי משתנה מדי פעם, והדברים בבלוג הזה אמורים להיות נכונים לנצח.

פיי בעולם העתיק

מתברר כי הבבלים השיגו קירוב טוב מאוד לערך של פיי, שעולה אך במעט על הקירוב המצרי. התנ"ך, לעומת זאת. אינו מומלץ כטקסט ללימוד מתמטיקה.

בתנ"ך, בספר מלכים א, פרק ז' בו מתואר המקדש שבנה שלמה, מתואר בפסוק כ"ג ים הנחושת שבמקדש:

"וַיַעַשׂ אֶת הַיָם מוּצָק, עֶשֶר בָאַמָה מִשְפָתוֹ עַד שְפָתוֹ עָגֹל סָבִיב, וְחָמֵשׁ בָאַמָה קוֹמָתו וְקָו  שְלשִים בּאַמּה יָסב אתוֹ סָבִיב"

כלומר היקפו של ים הנחושת 30 אמה וקוטר של 10 אמות, ומכאן שלפי נתוני ספר מלכים ערכו של פיי שווה ל-3. אמנם קיים איזה פלפול ולפיו הערך של פיי גם על פי ספר מלכים הוא 3.14, ומי שמעוניין יכול לחפש אותו ברשת ולהתרשם.

המצרים (על פי התיעוד בפפירוס רינד) העריכו כי שטחו של מעגל החסום בריבוע שווה לשטחו של ריבוע שאורך צלעו  היא 8/9 מצלע הריבוע החוסם את המעגל (זוהי בעצם הערכה לפיה שטח המעגל שווה לשטח מתומן משוכלל החסום בתוכו), ומהערכה זו נובע כי ערכו של פיי הוא בערך 256/81 או 3.16. ערך זה גבוה ב-0.6% מהערך האמיתי.  אולם כבר 500 שנים קודם לכן השתמשו הבבלים בחישוביהם בערך  לקירוב היחס בין היקף המעגל וקוטרו, 25/8. ערך זה נמוך ב-0.5% מהערך האמיתי של פיי.

גם תרבויות אחרות השיגו קירובים טובים לערך של פיי. האסטרונום ההודי יאגנואלקיה השתמש במאה התשיעית לפני הספירה בקירוב 339/108 (0.09% מתחת לערך האמיתי). ארכימדס שכלל את השטטה המצרית, וקירב את שטח המעגל של ידי מצולע משוכלל בן 96 צלעות. הוא השיג קירוב של 0.02% במאה השלישית לפני הספירה. כ-500 שנה מאוחר יותר, שיפר תלמי את קירוב ארכימדס על ידי שימוש במצולע משוכלל בן 360 צלעות, והשיג דיוק של יותר מ99.999%. קירוב דומה השיג גם המתמטיקאי הסיני ליו הוי.

מי הנהיג את השימוש באות היוונית פיי לציון היחס בין היקף המעגל לקוטרו?

ובכן, כיום סבורים כי השימוש הראשון באות היוונית פיי לסימון הקבוע המתמטי החשוב הזה נעשה בספרו של ויליאם ג'ונס, שיצא לאור ב-1706, אולם עדיין נהוג לייחס את הפצת השימוש באות פיי לליאונרד אוילר, שהשתתמש בו לראשונה במאמר שכתב ב-1737.

הקשר בין פיי ובעיית ריבוע המעגל

בעיית ריבוע המעגל (או יותר נכון, ריבוע העיגול) היא הבעיה של בניית ריבוע ששטחו שווה לשטח של עיגול נתון בעזרת מחוגה וסרגל.  בעיה זו אינה ניתנת לפתרון כיוון שפיי הוא מספר טרנסצנדנטי. אני לא ארחיב כאן מלים רבות על הנושא – פשוט משום שגדי אלכסנדרוביץ כבר עשה זאת בבלוג המצויין שלו, ואני פשוט אפנה אתכם לרשימה שכתב: "אז למה אי אפשר לרבע את העיגול?". המתמטיקאי שהוכיח כי הבעיה אינה ניתנת לפתרון, או יותר נכון, הוכיח כי פיי הוא מספר טרנסצנדנטי ומכך נבע כי בעיית ריבוע המעגל אינה ניתנת לפתרון, הוא פרדיננד פון-לינדמן, שפרסם את הוכחתו ב-1882. ההוכחה, אגב, מתבססת על הקשר המופלא שהראה אוילר בין פיי וקבועים מתמטיים אחרים – המספר e, המספר המדומה i, והמספרים 0 ו-1:

תפקידו של פיי בסטטיסטיקה

לפיי תפקיד חשוב בסטטיסטיקה כיוון שפיי מופיע בנוסחת ההתפלגות הנורמלית. שתי תשובות כאן נועדו לבלבל את המנסים לנחש ניחושים אינטליגנטיים. אין בכלל דבר כזה "עקומת צפיפות האוכלוסיה של אוילר". אני המצאתי את העקומה הזו כשכתבתי את החידון המקורי לפני חמש שנים. גם עניין נוסחת גודל המדגם הוא מופרך למדי. אין דבר כזה "נוסחה לחישוב גודל מדגם". זה עניין הרבה יותר מורכב משימוש בנוסחא.

מה שמעניין הוא שאכן ניתן לקרב את ערכו של פיי באמצעות הטלת מחט על גיליון נייר,  בתנאי שעושים זאת הרבה מאוד פעמים. תוצאה זו ידועה בשם בעיית המחט של בופון (על שם הרוזן דה-בופון, שהציג לראשונה את הבעיה במאה ה-18). אם מטילים את המחט על גבי גליון נייר שעליו משורטטים קוים מקבילים, אז ההסתברות כי המחט תיפול כך שתחצה את אחד הקוים תלויה בפיי. למשל, אם המרחקים בין הקוים שווים לאורך המחט, אז ההסתברות כי המחט תחצה את אחד בקווים שווה ל-2 חלקי פיי. איך פיי מופיע כאן? ההסתברות תלויה במקום בו נמצא מרכז המחט ובזוית בין המחט ובין הקוים המקבילים. כאן נכנסת פונקציית הסינוס לתמונה, ועימה פיי. אם תטילו מחט כזו על דף פעמים רבות, אז תוכלו לקבל קירוב לערכו של פיי על ידי חלוקת 2 בפרופורציית הפעמים בהן המחט חצתה את אחד הקוים. חוק המספרים הגדולים מבטיח לכם כי הקירוב יהיה טוב יותר ככל שיגדל מספר הנסיונות.

מי נולד ביום הפיי?

המתמטיקאי שיום הולדתו הוא יום הפיי, ה-14 למרץ, הוא אלברט איינשטיין, שנולד ביום זה בשנת  1879. איינשטיין ידוע בראש ובראשונה כפיזיקאי, וזה אכן היה עיסוקו העיקרי. אולם ברור לכל שאין כל אפשרות לעסוק בפיזיקה ברמה שבה עסק איינשטיין ללא ידע מתמטי נרחב ויכולות בתחום. למעשה, איינשטיין נאלץ לפתח בעצמו (למעשה, בצוותא עם ידידו ושותפו למחקר גרוסמן) את הכלי המתמטי העיקרי בו השתמש בפיתוח תורת היחסות הכללית – אנליזה טנזורית. תורת היחסות הכללית פורסמה ב-1915, וממש באותו זמן פרסם המתמטיקאי דויד הילברט עבודה משלו בתחום האנליזה הטנזורית, שחפפה לחלק המתמטי של עבודתם של איינשטיין וגרוסמן. כאשר ב-1921 נסע איינשטיין לארה"ב יחד עם ד"ר חיים וייצמן, במטרה לגייס כספים להקמת האוניברסיטה העברית. ניצל את ההזדמנות כדי לתת הרצאה על תורת היחסות בפרינסטון. האולם היה מלא מפה לפה, ועל כך העיר איינשטיין: "לא ידעתי כי כל כך הרבה אנשים באמריקה מתעניינים באנליזה טנזורית".

באיזה אופן מתנהגות הספרות בפיתוח העשרוני של פיי ?

הטענה היחידה  שניתן לטעון בודאות בודאות לגבי הספרות בפיתוח העשרוני של פיי היא שהן מתנהגות באופן לא מחזורי, וזה נובע מאי הרציונליות של פיי. הן לא מתנהגות באופן סטטיסטי כי אין חיה כזו. האם הן מתנהגות באופן אקראי ? ההשערה היא שכן, אבל איש עדיין לא הוכיח זאת.

איזה מהנוסחאות הבאות אינן מהוות קירוב טוב לפיי?

אני לא זוכר למה בדיוק התכוונתי כשכתבתי את השאלה הזו לפני כמה שנים.

הנוסחה שבסעיף א התגלתה/פותחה על ידי וייטה:

בסעיף ב מופיעה הנוסחה שפיתח לייבניץ, אחד מאבות החשבון הדיפרנציאלי, לפיי:

המכפלה האינסופית שבסעיף ג ידועה בשם מכפלת ואליס, ואינה מתכנסת לפיי, אלא לפיי חלקי 2.

בסעיף ד מופיע מופיע טור הדומה לטור של לייבניץ – שימו לב לסימנים ההפוכים, ואם הוא מתכנס אז בודאי לא לפיי.

יום פיי שמח!

המתמטיקאים בעולם חוגגים היום את יום הפיי. פיי הוא קבוע מתמטי שודאי שמעתם עליו, וערכו שווה בקירוב ל-3.14.בשיטה הנהוגה בארה"ב, התאריך של היום, ה-14 במרץ, נכתב כך: 3.14, ומכאן מקור המנהג.

בגוגל מציינים את היום על ידי לוגו מיוחד (שהוא התירוץ לכל הפוסט הזה):

ואם כבר כתבתי פוסט, אז הנה חידון פיי שכתבתי פעם כאשר ניהלתי את פורום המתמטיקה בתפוז. אתם מוזמנים לנסות את כוחכם. בהצלחה!

1) בעולם העתיק פיי מוזכר בכתבים בבליים, מצריים ואף בתנ"ך. מי מהשלושה נותן את הקירוב המדוייק ביותר לערך האמיתי של פיי?
א. המצרים.
ב. התנ"ך.
ג. הבבלים.

2) מבין ארבעת השברים הבאים – איזה הוא הקירוב המדוייק ביותר לפיי?
א. 2549491779/811528438
ב. 22/7
ג. 864/275
ד. 3927/1250

3) מי הנהיג את השימוש באות היוונית פיי לציון היחס בין היקף המעגל לקוטרו?
א. ארכימדס
ב. אוילר.
ג. גאוס
ד. איינשטיין.

4) בעיית ריבוע המעגל קשורה למספר פיי. בעיה זו אינה ניתנת לפתרון כיוון ש-
א. פיי הוא מספר אלגברי.
ב. פיי הוא מספר רציונלי.
ג. פיי הוא מספר אירציונלי.
ד. פיי הוא מספר טרנסצנדנטי.

5) המתמטיקאי שהוכיח כי בעיית ריבוע המעגל אינה ניתנת לפתרון הוא:
א. אוילר.
ב. גאוס.
ג. לינדמן.
ד. לז´נדר.

6) לפיי תפקיד חשוב בסטטיסטיקה כיוון ש-:
א. ניתן לקרב את ערכו של פיי באמצעות הטלת מחט על גיליון נייר.
ב. פיי מופיע בנוסחה לחישוב גודל המדגם.
ג. פיי מופיע בנוסחת ההתפלגות הנורמלית.
ד. פיי הוא הערך המקסימלי בעקומת צפיפות האוכלוסיה של אוילר.

7) המתמטיקאי שיום הולדתו הוא יום הפיי, ה-14 למרץ, הוא:
א. אוילר.
ב. איינשטיין.
ג. גאוס.
ד. פרמה.

8 ) עד לכמה ספרות (בערך) אחרי הנקודה העשרונית חושב ערכו של פיי?
א. מיליון.
ב. 206 מיליארד.
ג. 25,000.
ד. 75 מיליון.

9) באיזה אופן מתנהגות הספרות בפיתוח העשרוני של פיי ?
א. באופן מחזורי.
ב. באופן אקראי.
ג. באופן סטטיסטי.
ד. באופן לא מחזורי.

10) איזה מהנוסחאות הבאות אינן מהוות קירוב טוב לפיי?

הרצאה של פרופ' מריו ליביו – 17 לדצמבר‬

פרופ' מריו ליביו, מחברם של מספר ספרי מתמטיקה פופולרית, ירצה בתאריך 17.12.09 במועדון האסטרונומי של אוניברסיטת תל אביב בנושא ספרו האחרון "האם אלוהים הוא מתמטיקאי?". לפרטים לחצו כאן. אני אשתדל מאוד להיות שם.

אני קורא כעת את ספרו האחרון של ליביו. לשבחו אוכל לומר שסגנון הכתיבה שלו משתפר, והספר יותר מעניין לקריאה מספריו הקודמים. התכנים שבספריו מרתקים כמובן, בלי קשר לסגנון הכתיבה. בספר האחרון יש פרק העוסק בסטטיסטיקה – אני חייב לומר שקצת התאכזבתי כשקראתי אותו. מקווה לדווח בקרוב על רשמי מהקריאה.

הקומבינטור הישראלי הידוע

ב-Ynet הופיע ראיון עם הקומבינטור הישראלי הידוע נוגה אלון. מעניין.