חיפוש באתר

קישורים

עמודים

קטגוריות

ארכיב עבור תגית על סדר היום

חיסוני חצבת ואלימות נגד נשים

בשבוע שעבר תלו הורים באחד מגני הילדים (בגבעתיים נדמה לי) שלטים על שער הגן בו הזהירו כי בגן יש ילדה לא מחוסנת והתריעו על סכנת הדבקות בחצבת. אפשר להתווכח על השלט, תוכנו, וגם על הסגנון. בדיון בפייסבוק נטען כי זו "פעולה אלימה מאוד". לעומת זאת נטען באותו דיון גם כי " זו התנהגות סבירה לחלוטין… בירושלים בה יש התפרצות חצבת כרגע, יש שלטים בכניסה לקופות החולים שמזהירים הורים שילדיהם חשודים בהידבקות בחצבת מפני כניסה למרפאה ומבקשים להישאר בחוץ ולקרוא לאיש צוות שייצא אליהם, ובצדק גמור". אני באופן אישי חושב שצריך להזהיר את הציבור ובפרט הורים לילדים בגן על המצאות ילדה שלא חוסנה ביודעין, בייחוד כשבארץ יש כעת התפרצות חמורה של מחלת החצבת, ונכון למועד כתיבת שורות אלה למעלה מ-2000 איש אובחנו כחולים, ורבים עוד יותר נחשפו למחלה בבתי ספר, קופות חולים ובתי חולים, בתחבורה הציבורית ובמקומות נוספים.

בכל מקרה, אני לא חושב שהצבת שלטי אזהרה מפני ילדה לא מחוסנת שקולה לליל הבדולח (או למעשים אחרים שנעשו בגרמניה הנאצית), אבל אבישי מתיה חושב שכן ומזהיר כי "זה ייגמר בדם":

אבל בוא נעזוב את אבישי מתיה ונדון בסטטיסטיקה.

בואו נראה קודם מה יכול לקרות בגן. לכאורה אין בעיה. הילדה לא מחוסנת, ולכן הדבר הגרוע ביותר שיכול לקרות הוא שהיא תידבק בחצבת, וזו עיקר הבעיה שלה. היא עלולה להדביק אנשים אחרים שלא מחוסנים, ובגן כל הילדים האחרים מחוסנים, אז הם לא יידבקו.

זהו, שלא.

בואו נניח כי בגן הספציפי הזה יש 30 ילדים, ואף אחד מהם אינו במצב בריאותי שלא איפשר לו לקבל חיסון. כולם קיבלו חיסון. האם כולם מחוסנים? לא בהכרח. היעילות של החיסון, לאחר קבלת מנה אחת של חיסון, היא בערך 95%. אחרי קבלת המנה השנייה היעילות עולה ל-99%, אבל המנה השנייה ניתנת רק בכיתה א, והילדים האלה עדיין בגן. הסיכוי שילד אחד שקיבל חיסון אכן מחוסן הוא לכן 0.95. הסיכוי ששני ילדים אחד שקיבל חיסון הינם אכן מחוסנים הוא 0.95 כפול 0.95. הסיכוי כי כל 30 הילדים בגן שקיבלו חיסון אכן מחוסנים הוא 0.95 מוכפל בעצמו 30 פעמים, וזה יוצא 0.215. מכאן שהסיכוי כי בגן הזה יש לפחות ילד אחד שאינו מחוסן למרות שקיבל חיסון הוא כמעט 80%. הסיכוי שבקרב כל האנשים שנמצאים בסביבתה של הילדה הלא מחוסנת יש לפחות אדם אחד לא מחוסן הוא הרבה יותר גבוה. אם הילדה הזאת תחלה, כמעט בטוח שהיא תדביק אדם נוסף אחד לפחות. ככה המגיפות מתפשטות.

חצבת היא אחת המחלות המדבקות ביותר שיש, ויש אומרים כי זו המחלה המידבקת ביותר. באוכלוסייה שאיננה מחוסנת, אדם חולה ידביק בממוצע 18 אנשים נוספים. הסיכוי כי אדם לא מחוסן שנחשף לחצבת יחלה במחלה עולה על 90%. חשיפה למחלה כוללת המצאות במקום שבו היה אדם חולה חצבת אפילו שעתיים לאחר שהחולה עזב את המקום. לדעתי האישית, זה השיקול היחיד שצריך לקבוע. כמו שאף אדם מוסרי לא ידחוף דחיפה קטנה מישהו שעומד על הרציף ויש סיכון, קטן אך חיובי, שהנדחף ייפול אל מתחת לגלגלי הרכבת, אני חושב שאף אדם מוסרי לא צריך לאפשר אפילו סיכון קטן של הדבקת אדם אחר בחצבת. המעשה המוסרי הוא לצמצם את הסיכון. לכן, לא לחסן ילדים מתוך אידאולוגיה זה מעשה לא מוסרי, כי זה מסכן גם את הילד שלא מחסנים וגם אחרים, וחיסון מקטין מאוד את הסיכון הזה. להזהיר אנשים מפני סיכון של הדבקות בחצבת, גם אם הסיכון קטן, זה לדעתי המעשה הנכון והמוסרי.[1]

בשלב זה נטען כי ההסתברות שציינתי (מעל 90%) היא הסתברות מותנה, וזה נכון. זו אכן ההסתברות המותנה להדבקות בהינתן חשיפה לאדם חולה. ניתן כנגדי כי ההסתברות הרלוונטית היא "הסיכוי במצב נתון, בחיים נורמליים ורגילים בחברה הישראלית, להידבק". אני לא אחזור כאן על כל הטיעונים שנטענו[2] ,אבל השורה התחתונה של הטיעון היא כי הסיכון להדבקות בחצבת הוא הוא "נמוך. מאד. קטנטנן."

אולם אני חושב בכל זאת שההסתברות הרלוונטית היא ההסתברות המותנה. כאן עשיתי אנלוגיה לרצח נשים. אני רוצה להבהיר כי אין בכוונתי לרמוז כי הנושא הזה אינו מטריד את האדם שהתדיין מולי, ובוודאי שאיני שם מילים בפיו. אני כן טוען כי ההסתברות הלא מותנה אינה רלוונטית כאשר דנים בסיכונים מהסוג שלי.

הטיעון שלי הוא כזה: השנה נרצחו יותר מ-20 נשים. הבה נעגל את המספר ל-30. בישראל יש קרוב ל-9 מיליון תושבים, כמחציתם, כלומר כ-4.5 מיליון הן נשים. הבה נעגל את המספר הזה ל-4 מיליון. כעת נבצע פעולת חילוק, ונקבל כי הסיכוי של אישה להירצח, עם עוד עיגול נדיב כלפי מעלה, הוא כ-1 ל-130 אלף. סיכוי הרבה יותר קטן מהסיכוי להידבק בחצבת[3]. אז לא צריך לעשות כלום בנושא???

אחת המשתתפות בדיון לקחה את הטיעון הזה עוד יותר רחוק ואמרה כי "הסתברות להיפגע בפיגוע טרור היא נמוכה מאוד מאוד…השנה נרצחו בפיגועי טרור 15 איש… אז אולי בכלל אין צורך לנקוט בפעולות כאלה חריפות למלחמה בטרור, ממילא מההסתברות לפגיעה היא נורא נמוכה".

אני חושב שהנקודה ברורה. בסיכונים צריך לדון בהקשר של גורמי סיכון, וההסתברות הרלוונטית היא לכן ההסתברות המותנה בגורמי הסיכון. כדי לנהל את הסיכונים צריך לטפל בגורמי הסיכון. במקרה של מגיפת החצבת, גורם הסיכון היחיד שניתן לטפל בו כרגע אופן ההתפשטות המהיר של המחלה. הדרך היחידה האפשרית להאט את קצב התפשטות המחלה היא לחסן את האוכלוסייה.

ויש עוד נקודה שצריך לשים לב אליה. אף אחד לא מטיף לרצח נשים, אבל יש עשרות אלפי אנשים שמקדמים אג'נדה אנטי חיסונית, והתנועה הזו צוברת תאוצה ועלולה להגיע למסה קריטית מסוכנת (והסיכוי שזה יקרה הוא לדעתי מאוד לא זניח). לצערי, לא קיימות כרגע סנקציות שאפשר לנקוט נגד אנשים שאינם מחסנים את ילדיהם ואנשים המעודדים אנשים אחרים לא לחסן. מה שניתן לעשות זה להזהיר מפני הסכנות, גם אם זה פוגע ברגשותיו של אבישי מתיה.


הערות
  1. הערה: בפיסקה זו יש בעיקר דיון מוסרי, והדברים שכתבתי בפיסקה זו היו בדיון המקורי תשובה לשאלה סטטיסטית על סיכויי ההדבקות המחלה. ניתן לטעון נגד ההיסחפות שלי לדיון מוסרי, אולם אני חושב שאי אפשר לדון בשאלה הסטטיסטית בלי להידרש למשמעות המוסרית שלה. []
  2. תוכלו לקרוא זאת בדיון בפייסבוק []
  3. שהוא כ-1 ל-4500, על פי הנתון הנוכחי של כ-2000 חולים באוכלוסייה של כ-9 מיליון איש []

כמה מחשבות בעקבות תאונת הדרכים הקטלנית בכביש 90

ביום הבחירות לראשויות המקומיות שהתקיים לפני שבוע, בתאריך 30.10.2018, התרחשה תאונת דרכים קשה מאוד בכביש מספר 90, באיזור ים המלח. התנגשות חזיתית בין שני כלי רכב גרמה לעליית אחד מהם באש, ושמונת נוסעיו, זוג הורים וששת ילדיהם נספו. בתאונה טראגית זו היה שילוב נדיר של מספר גורמים שהפכו אותה לקשה במיוחד. האם אפשר היה למנוע את התאונה הזו? איש אינו יודע. הנה דעתי בקשר למספר נושאים הקשורים לתאונה הזו. המשותף לכל הנושאים: אני לא מאמין שייעשה משהו בעניינים אלה.

ההתנגשות

לא ברור (לי לפחות) אם ההתנגשות החזיתית קרתה בגלל שנהג ג'יפ הטויוטה יצא לעקיפה מסוכנת בכביש לא פנוי או סטה ממסלולו. וכך נגרמה ההתנגשות החזיתית. למרבה הצער זה לא משנה.

עם זאת, יש לדון כאן בשתי שאלות. שאלה אחת היא האם ניתן היה למנוע את הסטייה או העקיפה. השאלה השנייה היא האם ניתן היה למנוע את ההתנגשות – בהנחה שהיא נגרמה כתוצאה מסטייה לא רצונית מהנתיב. לשתי השאלות יש תשובה אחת.

אורלי וגיא העלו את הנושא הזו בתכניתם בערוץ 10/14. יש תשובה פשוטה לשאלות האלה: אילו הייתה גדר הפרדה בין הנתיבים, ההתנגשות החזיתית לא הייתה יכולה להתרחש. אבל הדברים יותר מסובכים: מדובר בכביש חד מסלולי ודו נתיבי. גדר הפרדה בין הנתיבים תגרום לכך שלא תהיה שום אפשרות עקיפה בכביש המופרד, וגם אם נהג סוטה מנתיבו בשוגג, עדיין הגדר תמנע התנגשות חזיתית. אבל, מה עושים אם רכב נתקע, נניח אוטובוס או משאית? או אם רחמנא לצלן נתקעים מאחורי רכב שנוסע במהירות המותרת או אף פחות מכך?

פתרון אפשרי הוא להציע לסלול כביש דו מסלולי עם ארבעה נתיבים, שניים לכל כיוון. העלות של הסבת חלקו הדרומי (מאיזור ים המלח ועד יטבתה) של כביש 90 לכביש כזה נאמדת במיליארדים. נפח התנועה בכביש ככל הנראה אינו מצדיק השקעה כזו, ובאשר לחיים שיינצלו: יכול להיות שאם הכסף הזה יושקע במקום אחר יינצלו חיים רבים יותר.

יש פתרון שלישי: להרחיב את הכביש לכביש חד מסלולי עם 3 נתיבים, ולהקים גדר הפרדה כך שהנתיב השלישי ישרת לעיתים את התנועה דרומה ולעיתים את התנועה צפונה, על ידי הסטה של גדר ההפרדה מידי כמה קילומטרים.

פתרון נוסף הוא לבנות גדר הפרדה במקומות מועדים לפורענות: קטעים עם שדה ראיה מוגבל, פיתולים וכדומה. אפשר להגדיל ולעשות ולבנות גדר הפרדה לאורך רוב הכביש, עם השארת קטעים ללא הפרדה בהם אפשר לבצע עקיפות בטוחות.

המהירות

לא הצלחתי למצוא בשלל הכתבות שהתפרסמו התייחסות למהירות שבה נסעו שני כלי הרכב. המהירות המותרת בכביש בו אירעה התאונה היא 90 קמ"ש. על סמן היכרותי עם תרבות הנהיגה בארץ, אני חושב שהסיכוי כי שני הנהגים לא עברו את המהירות המותרת הוא נמוך. מצד שני, גם  כאשר נוהגים במהירות המותרת, התנגשות חזיתית בין שני כלי רכב מובילה לתוצאות קשות. בכל מקרה, אתייחס כאן לנושא המהירות ללא כל קשר לתאונה עצמה.

יש מי שיטענו שמהירות עצמה אינה הורגת. פורמלית זה כנראה נכון. מטוסי נוסעים חוצים את האוקיינוס האטלנטי במהירות של 900 קמ"ש ולנוסעים לא קורה כלום.

אבל, אני לא חושב שיקום פה מישהו שיטען כי להתנגשות של שני כלי רכב הנוסעים במהירות 20 קמ"ש תהיה אותה תוצאה כמו במקרה של התנגשות בין שני כלי רכב הנוסעים במהירות 90 קמ"ש. אם מתרחשת תאונה, למהירות הרכב יש תפקיד גדול מאוד בקביעת הנזק הנגרם כאשר ג'יפ טויוטה מתנגש ברכב אחר, או בעץ או בקיר בטון.

גורם נוסף שצריך לקחת בחשבון הוא זמן התגובה. מקובל כי הזמן שעובר מהרגע שבו נהג מבחין במשהו שמצריך את תגובתו ועד לביצוע התגובה הוא שתי שניות. רכב שנוסע במהירות 90 קמ"ש עובר 25 מטר בשניה, או 50 מטר בשתי שניות. יש לזה השלכות. למשל, אם נוסעים במהירות הזאת מאחורי רכב אחר, צריך לשמור ממנו מרחק של כ-50 מטר. זה לא קורה בכבישים שלנו. הנהג צריך גם להיות מסוגל להבחין בעצמים בעייתיים בכביש שמצריכים את תגובתו: הולכי רגל[1], אופניים, רכב שעומד בשוליים, רכב שסוטה ממסלולו מסיבה כלשהי ונכנס למסלול התנגשות מולך, או רכב שעוקף אותו וחותך במהירות ימינה כדי להימנע מהתנגשות ברכב שבא ממול. ככל שהדברים האלה מתרחשים במהירות גבוהה יותר פוטנציאל הנזק גבוה יותר.

המסקנה ההגיונית היא לכן להקטין את המהירות, אבל ההיגיון הזה מוביל למסקנה הנכונה אבל בלתי קבילה שאין לנסוע כלל – או, במילים אחרות, לקבוע את המהירות המותרת ל-0 קמ"ש.

המהירות המותרת היא לכן פשרה: איזה מחיר אנחנו מוכנים לשלם תמורת האפשרות לנוע במכוניות. בשטחים עירוניים יש יותר הולכי רגל, יותר ילדים, יותר אופניים, ולכן שם אנחנו מגבילים את המהירות המותרת ל-50 קמ"ש. זה לא מונע לגמרי תאונות, פצועים והרוגים, אבל מישהו כאן חושב שצריך להעלות את המהירות המותרת בעיר ל-90 קמ"ש?

המשוואה בכביש 90 דומה: למהירות מותרת של 90 קמ"ש בכביש חד מסלולי, דו סטרי ודו נתיבי ללא גדר הפרדה יש מחיר מסויים, שמתבטא בחיי אדם, בפצועים ובסתם נזק לרכוש. אם המחיר גבוה מדי, צריך לעשות משהו, שכרוך במחיר אחר. אבל מי בעד הורדת המהירות המותרת? ומי חושב שאם יורידו את המהירות המותרת זה יעזור?

וכאן אני מגיע לנושא כואב במיוחד: אכיפת חוקי התנועה בכלל ואכיפת המהירות המותרת בפרט.

הארץ סוערת מזה מספר חודשים עקב קביעת בית המשפט השלום בעכו כי מצלמות המהירות החדשות שהוצבו ברחבי הארץ אינן אמינות. אין לי נתונים ולכן לא אכנס כאן לדיון בנושא. אומר רק שההתרשמות שלי היא כי הציבור הרחב די מרוצה מהחלטת בית המשפט שגרמה, באופן זמני לפחות, להפסקה בפועל של אכיפת המהירות המותרת בכבישים ברחבי הארץ. אני לא שותף לשמחה הזו, כי כפי שציינתי למעלה למהירות יש מחיר, ואני חושב שלעיתים לא מעטות המחיר הזה גבוה מדי.

בואו נתבונן במקרה חריג במיוחד: כביש 6. המהירות המותרת בכביש זה גבוהה במיוחד, ומגיע בקטעים מסויימים ל-120 קמ"ש. אני לא חושב שיהיה מי שיחלוק על כך שבפועל כלי רכב רבים נוסעים בכביש הזה במהירות הגבוהה באופן משמעותי מהמהירות המותרת. אם אתם חושבים שזה בסדר תעברו הלאה, אבל רק אחרי שתענו על השאלה הבאה: כמה זה "בסדר"? לנסוע במהירות 10 קמ"ש מעל המהירות המותרת זה בסדר? 20? 30? כמה שרוצים?

אם אתם חושבים שיש רמת מהירות שהינה בלתי נסבלת אפילו בכביש 6, נניח 140 קמ"ש לצורך הדיון, הנה הצעה. בכביש 6 יש שערי אגרה, ובכל פעם שמכונית עוברת תחת שער אגרה המכונית מצולמת, ונרשמים מספר הרישוי של המכונית והשעה שבה היא עברה בשער. נניח שיש לנו שני שערים כאלה שהמרחק ביניהם הוא 20 ק"מ. מכונית שנוסעת במהירות המותרת, 120 קמ"ש, תעבור את המרחק הזה ב-10 דקות. מכונית שעברה את המרחק בשמונה דקות נסעה בין השערים במהירות ממוצעת של 150 קמ"ש, 30 קמ"ש מעל המהירות המותרת. בינגו. מה שצריך לעשות עכשיו זה לשלוף את פרטי בעלי הרכב לפי מספר הרישוי, ולזמן אותו לבית המשפט.

כשהעליתי את ההצעה הזו בטוויטר לפני זמן לא רב, נתקלתי בהתנגדות גורפת. נאמרו דברים על "חוסר הגינות" והובעה התנגדות ל-"אכיפה אוטומטית". אני עדיין לא מבין למה זה לא בסדר.

הנה הצעה דומה לגבי כביש 90: אפשר להציב לאורך הכביש מצלמות דומות במרחקים סבירים, קילומטר או שניים או עשרה, ולתעד באופן דומה את המהירות הממוצעת של כלי רכב לאורך הכביש לצורך אכיפה. לדעתי זה עדיף על מצלמה בודדת שמודדת מהירות רגעית. יש הבדל משמעותי בין נהג שברגע של חוסר תשומת לב עבר על המהירות המותרת אך התעשת ותיקן את טעותו ובין נהג שנסע באופן קונסיסטנטי במהירות ממוצעת גבוהה לאורך קטע דרך ארוך יחסית  אתם בעד או נגד? החבר'ה בטוויטר התנגדו.

חגורות בטיחות

למרות שכל הכתבות על התאונה של יום הבחירות ציינו במפורש כי אחד מכלי הרכב המעורבים היה ג'יפ טויוטה, רכב גדול וכבד, באף כלי תקשורת רשמי לא נאמר מאיזה סוג היה כלי הרכב השני. אם תפשו את הכתבות תמצאו ביטויים כגון "טנדר", ו-"רכב מסחרי". בשתי כתבות נאמר בפירוש כי כל שמונת הנוסעים שנהרגו היו חגורים בחגורות בטיחות. בחדשות ערוץ 10 נאמר פעם אחת כי זה היה רכב מסוג סיטרואן ברלינגו, אך אין לי תיעוד של הדיווח הזה. אתם יכולים להאמין לי שכך שמעתי או לא להאמין. בפורום רוטר ובאחד מאתרי המכוניות נאמר כי זה היה רכב מסוג רנו לוגאן, מיניואן לא יקר שייבואו לארץ הופסק לפני כמה שנים. בסיטרואן ברלינגו יש 5 מושבים, ואפילו ברנו לוגאן יש רק 7 שבעה מושבים. לפחות נוסע אחד לא היה חגור בחגורת בטיחות.

יומיים לאחר התאונה הייתי בתורנות נשק חבק וסע בבית הספר של ילדיי. היה עלי לעמוד על המדרכה בכניסה לבית הספר, ולסייע לילדים שהוריהם הסיעו אותם לבית הספר לרדת במהירות רבה יותר מהרכב, ובכך להקל מעט על עומס התנועה ברחוב שבו שוכן בית הספר. נדהמתי לראות כמה ילדים נסעו לא חגורים, ולא פחות ממספר הילדים שישבו במושב הקדמי למרות שגילם ומימדיהם הגופניים לא התאימו לישיבה במושב הקדמי.

אין לי הרבה מה לומר בנושא. זה עוד סימפטום לתרבות עיגול הפינות שלנו ותחושת ה-"לי זה לא יקרה" המפורסמת.

עם זאת אעיר שתי הערות: אמנם החלטה לא לחגור חגורת בטיחות לא פוגעת באופן ישיר באנשים אחרים – זו לכאורה בעיה רק של מי שלא חגר. אבל האם יש קשר בין הנטייה לזלזל בחוק אחד לנטייה לזלזל בחוק אחר? אולי האנשים שלא חוגרים את עצמם ו/או את ילדיהם בחגורת בטיחות גם נוטים יותר לא לתת זכות קדימה להולכי רגל, לדבר בטלפון הסלולרי בזמן הנהיגה ולגנוב רמזורים אדומים? התחושה שלי היא שכן. זה משהו שכדאי וצריך לבדוק.

ועוד משהו: אני לא מקבל את הטענה שזו זכותו של הורה לקבל החלטת בקשר לילד שלו ולכן אם הוא לא רוצה לחגור את הילד בחגורת בטיחות או כיסא בטיחות זו זכותו. הורה כזה מסכן את חייו של הילד, ודינו כדין הורה מתעלל.

קנאביס

לפי מספר דיווחים, נהג הג'יפ שהיה מעורב בתאונת הדרכים של יום הבחירות נהג תחת השפעת קנאביס אותו צרך מספר שעות לפני הנסיעה. בשלב מסויים נטען כי זה היה קנאביס רפואי, ואילו בחדשות ערוץ 10 דווח כי לנהג לא היה רישיון לקנאביס רפואי. צייצתי על כך ציוץ קצת דמגוגי, אני מודה, בטוויטר, וכמובן שמייד קפצו כמה מגיבים ונתנו לי על הראש. בין היתר נשאלתי: "נתקלת במישהו רציני שאמר שסבבה לנהוג תחת השבעת קנאביס?". נכון, לא נתקלתי, ויש לזה סיבה טובה: הנהיגה תחת השפעת קנאביס מסוכנת.

בואו ניפרד מהתאונה ונדון בנושא במנותק.

קנאביס הוא כמו דינמיט וכמו אלכוהול. כשהוודקה נמצאת בתוך בקבוק על המדף בחנות היא לא מסוכנת, גם לא הדינמיט הארוז היטב ושמור בבונקר. הסיכון נובע מהשימוש ומהנסיבות.

אם מישהו חושב שלנהוג בכביש 90 תחת השפעת קנאביס זה לא מסוכן, באמת אין לי מה לומר לו. אבל על סמך התגובה שציטטתי למעלה אני מניח שרובכם יסכימו איתי שזה כן מסוכן.[2]  ואם כן, מה שצריך לעשות זה לנהל את הסיכונים.[3]

יש מספר גישות בעניין.

הגישה הראשונה היא הגישה של "מלחמה בסמים": איסור גורף המלווה בענישה פלילית.

גישה שניה טוענת שיש להחיל לגליזציה גורפת של שימוש בקנאביס ואולי אף בסמים אחרים. אם יש סיכונים, זכותו של המשתמש לקחת על עצמו את הסיכונים האלה. ואם הסיכונים עלולים לגרום לנזק לסביבה ולא רק למשתמש עצמו, אפשר לטפל בזה בשלל אמצעים. למשל: חוק שיאסור נהיגה תחת השפעת קנאביס, ומי שיעבור על החוק הזה יקבל עונש.

הגישה השלישית היא גישת עצימת העיניים: זה לא חוקי, אבל נתעלם. הגישה הזו מיושמת בהולנד[4] ובמידה מסויימת גם בישראל.

לגישה הזו יש הרחבה: נגיד שזה לא בסדר, אבל לא נעשה שום דבר משמעותי בעניין. ראו את הצעת החוק הפופוליסטית שהגישה ח"כ תמר זנדברג שהתגבשה בינתיים להצעת חוק ממשלתית שתחול כהוראת שעה למשך שלוש שנים.

על הגישה הרביעית אני רוצה לדבר בפירוט: גישת ה-"אי הפללה" על פי המודל הפורטוגלי. השימוש בקנאביס (ובסמים אחרים) אסור על פי חוק, אך העוברים על החוק לא מטופלים באמצעים פליליים אלא באמצעים חברתיים/רפואיים, והסנקציות הננקטות כלפיהם הן סנקציות אזרחיות. החלוצה של גישת אי ההפללה הייתה כמובן פורטוגל, ולפני כשנה  נורבגיה הלכה בעקבותיה. בפורטוגל, משתמשים בסמים מופנים לתכניות המתאימות למצבם. נרקומנים מקבלים את הסם לו הם זקוקים, וכך הם לפחות מוצאים ממעגלי הפשיעה ונמנעת התפשטות מחלות מסויימות. משתמשים "קטנים" מופיעים בפני ועדה שחברים בה עובד סוציאלי, פסיכיאטר ועורך דין. הועדה מוסמכת לנקוט סנקציות, שיכולות להיות קנסות, שלילת רישיון הנהיגה, איסור לעסוק במקצועות מסויימים, ועוד.

לפני כחמש שנים כתבתי פוסט ארוך שזכה להרבה תגובות נזעמות. בפוסט ההוא סקרתי שישה טיעונים מרכזיים של תומכי הלגליזציה, ועניתי לכל אחד מהם באופן מפורט.

אני עדיין עומד מאחורי חמישה מתוך ששת הטיעונים שלי. הטיעון שממנו נסוגותי הוא "טיעון פורטוגל". אמרתי כי לדעתי יש צורך להמתין לנתונים נוספים לפני שמאמצים את המודל הפורטוגלי. בפוסט שכתבתי לפני כשנה אודות המעבר של נורבגיה למודל הפורטוגלי כתבתי כי אני נוטה כעת לתמוך במודל הזה. האם ישראל תאמץ את המודל הזה? אני בספק. זה דורש הודאה בקיומה של בעיה ורצון אמיתי להתמודד איתה. אלה דברים שלא מקובלים בישראל.


הערות
  1. פחות סביר בכביש 90, אני מודה []
  2. יש עוד סיכונים בקנאביס אבל נניח להם כרגע []
  3. אל תגידו לי שקנאביס פחות מסוכן מאלכוהול, כי זה לא רלוונטי. אלכוהול הוא לא קו פרשת המים. לא כל מה שפחות מסוכן מאלכוהול אינו מסוכן. יש הרבה מאוד דברים שפחות מסוכנים מאלכוהול והם בכל זאת מסוכנים []
  4. אם כי נעשתה שם בשנים האחרונות נסיגה מסויימת במדיניות הזו []

תאונות הדרכים בישראל – לפני ואחרי מינוי של ישראל כץ לשר התחבורה

מה קורה עם תאונות הדרכים בישראל?

בתחילת יולי 2018 שר התחבורה ישראל כץ צייץ בשמחה בטוויטר (יש גם צילום מסך למקרה שהציוץ יימחק בדרך פלא) ובישר על "ירידה דרמטית של 22% (!!!) במספר ההרוגים בתאונות הדרכים, במחצית הראשונה של 2018"[1]. הירידה באמת משמחת, ללא ציניות. אבל האם זו ירידה חד פעמית, תחילה של מגמה, או תוצאה של מגמה? ומה חלקו של השר בירידה המבורכת הזאת? את חלקו של השר במה שקורה בחצי שנה אכן קשה להעריך, אולם ניתן לראות מה קורה לאורך זמן.

לשם כך שלפתי ממאגר הנתונים של הלשכה המרכזית לסטטיסטיקה את נתוני תאונות הדרכים עם נפגעים משנת 2003 ועד שנת 2017 שהתרחשו בתחומי הקו הירוק.

כאן עלי להסביר כי הנתונים של הלמ"ס מתייחסים רק לתאונות דרכים עם נפגעים בהן לפחות אחד מהמעורבים בתאונה נהרג או אושפז. חומרת התאונה נקבעת לפי חומרת הפגיעה של הנפגע החמור ביותר. אם יש הרוג אחד לפחות, התאונה מסווגת כקטלנית. אם הפגיעה החמורה ביותר היא לאדם שנפצע קשה ואושפז, התאונה מסווגת כתאונה קשה. במקרהtraffic_accidents שהפגיעה החמורה ביותר היא לאדם שנפצע פציעה בינונית או קלה, התאונה מסווגת כתאונה קלה. אם לא היו נפגעים, או שהיו נפגעים אך אף אחד מהם לא אושפז, התאונה לא נכנסת לסטטיסטיקה.

עכשיו אפשר להעיף מבט בנתונים, ולראות, למשל, כי ב-2003 היו בישראל 413 תאונות דרכים קטלניות, ובמשך השנים המספר ירד ל-295 תאונות קטלניות בשנת 2017. אי אפשר להכחיש כי אכן היה שיפור במצב.

השיפור אפילו יותר משמעותי ממה שהוא נראה במבט ראשון: ב-2017 היו הרבה יותר מכוניות מאשר ב-2003, והן נסעו הרבה יותר קילומטרים. אפשר לראות זאת בעזרת נתוני הנסועה. הנסועה היא סך כל הקילומטרים שנסעו כל כלי הרכב במשך השנה. הרכב שלי עובר כ-15 אלף ק"מ בשנה, וזו תרומתו לנסועה. מישהו אחר אולי נוסע 50 אלף ק"מ בשנה, ויש כאלה שאף נוסעים מרחקים יותר ארוכים. אם מחברים את סך הקילומטראז של כל כלי הרכב בשנה מסויימת מקבלים את סך הנסועה לאותה השנה. שלפתי מאתר הלמ"ס[2] גם את אומדני הנסועות[3] לשנים 2003 עד 2016. הנתון של 2017 אינו זמין עדיין ואמדתי אותו בעזרת מגמת העלייה לאורך השנים. ב-2003 הנסועה בישראל הייתה שווה ל-38.9 מיליארד ק"מ, וב-2017 היא נאמדה ב-57.7 מיליארד ק"מ. מכאן שב-2013 היו כ-10.6 תאונות דרכים קטלניות לכל מיליארד ק"מ, וב-2017 היו רק 5.1 תאונות דרכים קטלניות לכל מיליארד ק"מ. זו ירידה מבורכת של מעל 50%.

שאלה מעניינת היא איך זה קרה ולמה, אולם כדי לענות על שאלות אלה יש צורך בנתונים נוספים ובניתוח נרחב. יש כאן פוטנציאל לעבודת מאסטר.

אני אנסה לתאר בעזרת מודל ITS מה קרה לאחר שישראל כץ נכנס לתפקידו כשר התחבורה במרץ 2009. לא סביר לדרוש משר שינוי מיידי בתחומי אחריותו עם כניסתו לתפקיד, ולכן קבעתי את נקודה השינוי בתחילת 2010. הנתונים עד 2009 (כולל) נזקפים לזכותם (או לחובתם) של שרי התחבורה הקודמים[4].

נתבונן תחילה בנתוני סך תאונות הדרכים. ניתן לראות כי בשנים 2003 עד 2009 הייתה מגמת ירידה בשיעור הכולל של תאונות דרכים עם נפגעים. .

אנו רואים כי מגמת הירידה שהייתה בין 2003 ל-2009 נמשכת גם בשנים 2010-2017, אך המגמה הואטה במקצת וקצב הירידה נמוך יותר. השינוי מובהק סטטיסטית. מה המשמעות של השינוי? אילו מגמת הירידה הייתה נמשכת לפי הקו הירוק, הוא ה-counterfactual, היו לנו ב-2017  154.6 תאונות למיליארד ק"מ, ובסך הכל קצת יותר מ-8900 תאונות עם נפגעים. בפועל היו 12700 תאונות עם נפגעים ב-2017, כלומר 42% יותר, ובמספרים מוחלטים מדובר בעוד 3800 תאונות עם נפגעים שהיו יכולות להימנע לו מגמת הירידה הייתה ממשיכה ולא מואטת.

כעת נבחן לחוד את סוגי התאונות השונים. נתחיל בתאונות הדרכים ה-"קלות", שבהן היה לכל היותר פצוע בינוי או קל שאושפז:[5]

מאחר ורוב תאונות הדרכים עם נפגעים מסווגות כקלות (85-90%, תלוי בשנה), אנו רואים כאן תמונה דומה לזו שראינו כשהסתכלנו על הסך הכולל של תאונות הדרכים. יש בלימה במגמת הירידה של שיעור תאונות הדרכים הקלות החל מ-2010. גם כאן השינוי בקצב מגמת הירידה מובהק סטטיסטית. אילו התקיים תרחיש ה-counterfactual, היינו צפויים לראות ב-2017 כ-8730 תאונות "קלות", בעוד שבפועל היו 10579 תאונות כאלה, 21% יותר.

נמשיך אל תאונות הדרכים הקשות. רוב הירידה בכמות תאונות הדרכים הקשות הייתה בין השנים 2003 ל-2009. מגמת הירידה שהייתה הזו נבלמה, ואף גרוע מכך: מספר התאונות הקשות החל מ-2010 נמצא במגמת עליה (כל השינויים מובהקים סטטיסטית ומשמעותיים):

שימו לב כי אילו מגמת הירידה בשיעור תאונות הדרכים הקשות הייתה נמשכת באותו קצב גם אחרי 2009, אז ב-2017 לא היו אמורות להתרחש תאונות דרכים קשות בכלל. זה כמובן לא ריאלי, יכול להיות שהגענו כבר לקו התחתון של שיעור התאונות הקשות שמתחתיו אי אפשר לרדת או שאנחנו מאוד קרובים אליו. מה מידת האחריות של שר התחבורה כאן? לדעתי אי אפשר להטיל במקרה הזה את כל האחריות על שר התחבורה הנוכחי. עם זאת, אין להסיק מכך שאין לו אחריות כלל. יש לו אחריות מיניסטריאלית, ורצוי וצריך לבדוק את מידת האחריות שלו על ידי בחינת נתונים נוספים.

לבסוף נתבונן בנתוני תאונות הדרכים הקטלניות:

רוב הירידה של ה-50% שציינתי קודם בשיעור תאונות הדרכים הקטלניות שציינתי קודם הייתה בין השנים 2003 ל-2009 (בשנים האלה הייתה ירידה של כ-45% בשיעור התאונות הקטלניות). מגמת הירידה בשיעור תאונות הדרכים הקטלניות נבלמה. אמנם עדיין יש ירידה בשיעור תאונות הדרכים הקטלניות גם אחרי 2009, אך קצב הירידה נמוך באופן משמעותי (ומובהק סטטיסטית). שוב שימו לב כי אילו מגמת הירידה הייתה נמשכת באותו קצב גם אחרי 2009, אז ב-2017 לא היו אמורות להתרחש תאונות דרכים קטלניות בכלל. גם כאן, אי אפשר להטיל את כל האחריות על שר התחבורה הנוכחי. האם הגענו כבר לקו התחתון של שיעור התאונות הקטלניות שמתחתיו אי אפשר לרדת? דעתי האישית היא שניתן לעשות עוד. בשוודיה חושבים שהמטרה של אפס תאונות דרכים קטלניות היא ריאלית.

ניתן לטעון כי רואים כאן סוג של "טרייד אוף" בשנים 2010 והלאה: לאחר שמוצתה הירידה החדה של תאונות קטלניות וקשות בשנים 2003 עד 2009, יש עליה מסויימת במספר התאונות הקשות, כיוון שחלק מתאונות עם פוטנציאל להיות קטלניות הסתיימו "רק" בפציעות קשות.  עם זאת, יש לזכור כי שיעור התאונות הקשות גבוה פי 5 עד 6 משיעור התאונות הקטלניות. בין 2010 ל-2017 חלה בסך הכל ירידה כוללת של כתאונת דרכים קטלנית אחת למיליארד ק"מ, אך עליה של כחמש תאונות דרכים קשות למיליארד ק"מ. גם אילו כל הירידה בתאונות הדרכים הקטלניות הייתה הופכת לעליה בכמות תאונות הדרכים הקשות, עדיין צריך להסביר מאין באה העלייה של עוד ארבע תאונות דרכים קשות למיליארד ק"מ.

לסיכום: בתקופת כהונתו של ישראל כץ כשר התחבורה, עד סוף 2017, הואטה מגמת הירידה החדה בשיעורי תאונות הדרכים עם נפגעים שהתרחשה בין 2003 ל-2009. הירידות בשיעורי תאונות הדרכים הקשות והקטלניות נבלמו כמעט לחלוטין, ואף יש מגמת עליה בכמות תאונות הדרכים הקשות. ניתן להסביר רק חלק קטן (כ-20%) מכמות העלייה במספר התאונות הקשות על ידי ההשערה כי חלק מהתאונות עם פוטנציאל קטלני הסתיימו בפגיעות קשות בלבד. יש צורך לבדוק מה היו הסיבות לשינויי המגמות, ומה חלקו של שר התחבורה ומדיניות בכך, ולשם כך יש צורך בנתונים נוספים ובניתוח סטטיסטי יותר מקיף מהניתוח הבסיסי שהוצג כאן. ייתכן כי לא כל השינויים נבעו מפעילות השר ומדיניותו, אך עדיין יש לו אחריות מיניסטריאלית מלאה למצב תאונות הדרכים בשנות כהונתו.


הערות
  1. תוך כדי השתלחות בעמותת "אור ירוק", אבל זה סיפור אחר []
  2. מתוך השנתונים הסטטיסטיים []
  3. שמבוססים על מדגמים []
  4. אביגדור ליברמן – 2003 עד 2004, מאיר שטרית – 2004 עד 2006, ושאול מופז – 2006 עד 2009 []
  5.  ויקיפדיה: "פצוע בינוני הוא מי שנשקפת סכנה לחייו אם לא יקבל טיפול רפואי. כלומר, מי שכעת יש להשקיע מאמץ קטן כדי להציל את חייו, אך אם יוזנח, יידרש מאמץ גדול כדי להציל את חייו. פצוע בינוני יכול להיות גם מי שאין נשקפת סכנה ממשית לחייו, אך קיים חשש כבד לנכות משמעותית או איבוד איבר (גפיים, לרוב)." []

איך יודעים כמה אנשים מתים מנזקי העישון

מחדליו של סגן שר הבריאות בנושא המלחמה בעישון, תוארו בדו"ח של מבקר המדינה מחודש מאי 2018. בין היתר נאמר כי בכל שנה מתים בישראל כ-8,000 בני אדם כתוצאה ממחלות הנגרמות מעישון. יש לי הרבה מה לומר על אוזלת היד וחוסר המעש של מקבלי ההחלטות בנושא, אבל כאן אני מדבר בעיקר על סטטיסטיקה, והנושא שיעלה היום לדיון הוא הנתון בדבר המוות של 8000 בני אדם בשנה כתוצאה מעישון. איך יודעים את זה?

זהו כמובן אומדן שמתבסס על איסוף נתונים ויישום של שיטות סטטיסטיות. גם זה, כמו הרבה דברים אחרים, מתחלק לשלושה חלקים. החלק הקשה הוא החלק שבו אוספים את הנתונים. החלק הקל הוא החלק שבו מחשבים את החישובים (מזינים את הנתונים למחשב ולוחצים על הכפתור). וביניהם יש את החלק בו צריכים להבין מה עושים, ובאופן עקרוני זה לא מסובך.

כמה אנשים מתים?

נתחיל באיסוף הנתונים. נתון אחד שצריך לדעת הוא כמה אנשים מתים בכל שנה. זה לא קשה, לפחות במדינה מסודרת שבה נאספים נתונים כאלה באופן מסודר וקבוע. נתוני תמותה נאספים בדרך כלל במשך שנים רבות. הלשכה המרכזית לסטטיסטיקה מפרסמת בכל חמש שנים לוחות תמותה המבוססים על הנתונים שנאספו בחמש השנים שקדמו לשנת הפרסום. מייד נעיין באחד הלוחות (קישור לקובץ pdf). הנה קטע מלוחות התמותה של הלשכה המרכזית לסטטיסטיקה, המתייחס לגברים יהודים ואחרים (כלומר – לא ערבים), בין השנים 2011 ל-2015:

 

 

 

 

 

 

 

אני יודע שהסיכוי שלי למות בסופו של דבר הוא 100%. אבל אני בעזרת לוח התמותה יכול לדעת יותר מזה. אני גבר יהודי בן 55, ומהשורה האחרונה של לוח התמותה שבתמונה אני יכול ללמוד כי בהיעדר כל מידע נוסף, הסיכוי כי אמות בשנה הקרובה הוא 0.00425. לחילופין, על פי נתוני הלשכה, מתוך כל 100000 גברים יהודים, 95506 יגיעו לגיל 56, ו-4494 לא יזכו לכך. אני יודע שיש חוסר תיאום בין שני המספרים האלה, וזה נובע מתוך דקויות סטטיסטיות שלא אכנס אליהן כאן[1]. אני גם יכול ללמוד מהלוח כי תוחלת החיים שלי, בהינתן שכבר הגעתי לגילי המופלג, היא 27.6 שנים פלוס מינוס סטיית תקן ואירועים לא צפויים. יש גם סיכוי שאגיע לגיל 100, אך הוא קטן למדי.

לעומת זאת, לגבר ערבי בגיל 55 במדינת ישראל, הסיכוי למות לפני גיל 56 יותר גבוה: 0.00595, ותוחלת החיים שלו נמוכה יותר: נותרו לו, בממוצע, רק עוד 24.9 שנים לחיות.

איזה נתונים צריך כדי לאמוד את סיכוני העישון?

הנתון השני צריך לאפשר לנו לאמוד כמה אנשים מתו מנזקי עישון. זה כבר יותר מסובך. כולם מתים בסוף, גם אלה שמעשנים וגם אלה שלא. אדם יכול לעשן ולמות מסיבה שלא קשורה לעישון (אולי ממחלה זיהומית, אולי מתאונה, ואולי אפילו מסרטן שעישון אינו גורם סיכון שלו – יש סרטנים כאלה). אדם יכול לא לעשן ובכל זאת למות מסרטן הריאות או מחלת לב – כאשר עישון הוא גורם סיכון ידוע לשני המצבים הבריאותיים האלה.[2] ובכל זאת, הנתונים שיש לאסוף הם כמה אנשים מתים, כמה מהם מעשנים, וכמה לא.

במקומות רבים בעולם נערכים מחקרים תצפיתיים ארוכי טווח העוקבים אחרי מהלך החיים של אוכלוסיות, ואוספים נתונים על התנהגויות העשויות להשפיע על מצב הבריאות של הפרטים באוכלוסייה, כגון הרגלי אכילה ועישון. המחקר הידוע ביותר נערך בעיר פראמינגהם במדינת מסצ'וסטס בארצות הברית. החל משנת 1948 נאספים נתונים כאלה על אלפים מתושבי העיר שהסכימו להשתתף במחקר, והוא עוקב כעת אחרי הדור השלישי של התושבים. באתר המחקר תוכלו למצוא מחשבונים שבעזרתם תוכלו לדעת מה הסיכון שלכם ללקות במחלת לב. המחקר הזה הראה כי עישון הוא גורם סיכון משמעותי לסיכוי לחלות במחלת לב.

מחקר אחר, קצת ישן (משנת 1999) שערכו יעקובס ועמיתיו, עקב אחרי אוכלוסייה של כ-12000 איש בשבע מדינות במשך 25 שנים. המחקר אסף נתוני תמותה מכל סיבה שהיא, וכמובן נתונים נוספים. אחת המסקנות של המחקר הזה הייתה כי הסיכון למות של מעשנים המעשנים עד 10 סיגריות ביום גבוה פי 1.3 מהסיכון של לא מעשנים, והסיכון למות של אלה המעשנים יותר מ-10 סיגריות ליום גבוה פי 1.8 מאלה של הלא מעשנים. ללא הסבר המספרים האלה נראים תמוהים. מה זאת אומרת שהסיכון למות גבוה פי 1.8? כולם מתים בסוף. הסיכון למות הוא 100% לכולם. לא? לא. הסיכוי שאדם ימות בסופו של דבר הוא אכן 100%. הסיכון הוא לא סיכוי. אז בואו נעשה סדר.

איך מודדים את הסיכון

הסיכון נגזר מהסיכוי למות (או לחוות אירוע אחר כלשהו, כמו התקף לב למשל) במשך יחידת זמן מוגדרת, ומתייחס לנקודה ספציפית בזמן (או לתקופת זמן קצרה מאוד). אל תיבהלו, אבל אני אומר לכם שהסיכון הוא הנגזרת של ההסתברות המותנה למות (אתם יכולים לעבור הלאה בלי חשש). הסיכוי, לעומת זאת, מתייחס לתקופות זמן ארוכות יותר.

אני לא אכנס כאן להגדרה המתמטית המדוייקת של הסיכון. אומר רק שאם יודעים את הסיכוי למות במשך תקופת מסויימת, נניח שנה, אפשר לחשב מכך את הסיכון למות במשך אותה תקופת זמן. גם ההיפך נכון: אם יודעים את הסיכון אז יודעים את הסיכוי. כמו כן, באופן לא מפתיע, אם הסיכוי שלך למות בשנה הקרובה גבוה יותר, אז גם הסיכון שלך גבוה יותר.

ואם אפשר לעשות את האבחנה הזו בין יהודים וערבים, ובין גברים לנשים, בוודאי שאפשר לחשב את הסיכון של המעשנים ולהשוות אותו לסיכון של הלא מעשנים.

הכלי הסטטיסטי שמאפשר לבצע את התרגילים האלה הוא מודל הסיכונים הפרופורציונליים שפותח בשנת 1972 על ידי הסטטיסטיקאי הבריטי סיר דויד קוקס, וידוע גם בשם מודל קוקס. קשה להמעיט בחשיבות של המודל הזה. המאמר שבו הוצג המודל נמנה עם 100 המאמרים המדעיים המצוטטים ביותר בכל הזמנים – לא מאמרים בסטטיסטיקה, אלא כל המאמרים המדעיים.  המודל מאפשר לזהות גורמי סיכון  להתרחשות אירועים כגון מוות, ולמדוד מה פוטנציאל הסכנה בכל גורם סיכון כזה. בנוסף לכך, קוקס הציג במאמר שלו חידושים סטטיסטיים נוספים שהשפיעו רבות גם על תחומים אחרים בסטטיסטיקה. אילו היה פרס נובל לסטטיסטיקה, סיר דויד קוקס היה זוכה בו ללא צל של ספק. סיר קוקס אכן זכה כמעט בכל פרס אפשרי בתחום הסטטיסטיקה. המודל שלו בפירוש מאפשר הצלת חיים. לדעתי סיר קוקס ראוי לזכייה בפרס נובל לרפואה.

להלן נוסחת המודל. מייד אסביר הכל. ניתן לראות כי זהו למעשה מודל רגרסיה.

 

 

נתחיל בצד שמאל. שם מופיע הסיכון כפי שהוא מושפע מגורמי הסיכון – אותו אנחנו רוצים לאמוד. הוא מסומן באות למבדה – האות היוונית שדומה לאות ג. בצד ימין יש מכפלה של שני חלקים. חלק אחד מתאר את הסיכון הבסיסי – כאשר אין שום אינפורמציה. הוא מסומן בלמבדה אפס טי. הסיכון הבסיסי נקבע רק על פי נתוני התמותה. לכל אדם במדגם נתון האם הוא מת, אם כן, מתי, ואם לא, כמה שנים הוא חי עד למועד שבו הוחלט להפסיק את המעקב ולהזין את הנתונים למודל. החלק השני מכיל את גורמי הסיכון האפשריים, כגון גיל, מין, הרגלי אכילה, וגם כמובן משתנה המציין האם האדם שבמדגם מעשן או לא. גורמי הסיכון מסומנים באיקסים. לכל X יש מקדם שמסומן באות ביתא. אם ביתא שונה באופן משמעותי מאפס זה אומר שלמשתנה X יש השפעה משמעותית על הסיכון. אם ביתא חיובי זה אומר שהסיכון גדל ככל ש-X גדל, ואם ביתא שלילי זה אומר של-X יש דווקא השפעה חיובית. רמת הסיכון עולה (או יורדת) באופן פרופורציוני לערכו של .X[3] מכאן נובע שם המודל – מודל הסיכונים הפרופורציוניים. לאחר שאומדים את הפרמטרים של המודל אפשר, באופן תיאורטי, לחשב את הסיכון לאדם מעשן ולאדם לא מעשן.[4] בפועל, המודל מספק ישירות אומדן ליחס שבין הסיכונים, ה-hazard ratio. היחס הזה מתבטא במקדם הביתא של משתנה העישון.

למודל יש כמובן גם הנחות. החשובה שביניהן היא ההנחה כי יחס הסיכונים נשאר קבוע לאורך כל תקופת המעקב. זו הנחה חזקה, ובדרך כלל היא נכונה, וגם אם יש סטייה לא גדולה מההנחה הזו המודל מספיק עמיד (robust) כדי לספק אומדן טוב של הסיכון. יש הרחבות למודל שבהן מחליפים את ההנחה הזו בהנחה יותר גמישה אם יש צורך. אחד המודלים הידועים שמרחיבים את מודל קוקס פותח על יד שילה בירד.

איך מתרגמים את הנתונים למספרים

עכשיו נוכל לעשות את החישובים.

יש לנו את ההסתברויות למות בכל גיל מלוחות התמותה. יש לנו את גם יחס הסיכונים שהוא כזכור היחס בין הסיכון למות של אנשים המעשנים יותר מ-10 סיגריות ביום ובין הסיכון של לא מעשנים. זכרו כי זהו יחס הסיכונים לנקודה ספציפית בזמן. מתוך יחס הסיכונים אפשר לחשב את  יחס הסיכויים: היחס בין ההסתברויות למות במשך תקופת זמן מוגדרת, שנה למשל. בשביל זה יש נוסחה. אני אחסוך לכם אותה. יש בה אינטגרלים ואקספוננטים, וזה בדרך כלל לא טוב לבריאות. אם אתם ממש רוצים  אז אתם יכולים לקרוא כאן, למשל, אבל זה על אחריותכם (קישור לקובץ  pdf). אני חוסך את זה גם לעצמי, ואשתמש בנתון מתוך מאמר אחר מאת מהטה ופרסטון משנת 2012. לפי הנתונים במאמר הזה, יחס הסיכויים למוות בתקופת זמן של שנה, בין גברים מעשנים וגברים לא מעשנים הוא בערך 2.3 (לקחתי את הגבול התחתון של רווח הסמך, כדי לקבל הערכה שמרנית), לאחר תקנון לגיל, וזאת בארצות הברית, בשנים 1987 עד 2006.

אנחנו צריכים עוד נתון אחד והוא שיעור המעשנים באוכלוסייה. לצורך הדוגמה אשתמש בנתונים של משרד הבריאות משנת 2017, לפיהם כ-30% מהגברים מעל גיל 21 הינם מעשנים..

כשיש לנו את כל הנתונים מה שנשאר זה קצת אלגברה של בית ספר תיכון.[5]

נניח שהסיכוי של מעשן בן 55 למות לפני גיל 56 הוא X, והסיכוי של לא מעשן הוא Y. לפני הנתון של מהטה ופרסטון, X גדול פי 2.3 מ-Y, כלומר X=2.3Y. זה נותן לנו משוואה אחת המקשרת בין X ל-Y.

את המשוואה השנייה נגזור מתוך מה שידוע בשם נוסחת ההסתברות השלמה.  ניתן להציג את החישוב בצורת עץ הסתברויות:

 

 

 

 

 

 

 

 

 

מהי ההסתברות של גבר בן 55 למות? ההסתברות הזו שווה להסתברות שלו למות אם הוא מעשן שהיא כאמור X כפול ההסתברות שהוא מעשן, שהיא 30%, ולכך יש להוסיף את ההסתברות שלו למות אם הוא לא מעשן, Y, כפול ההסתברות שהוא לא מעשן, שהיא 70%.  כל זה צריך להיות שווה ל-0.00425, כלומר 0.3x+0.7y=0.00425.

עכשיו יש לנו שתי משוואות בשני נעלמים ואפשר לפתור אותן. הפתרון הוא ש-X, ההסתברות שגבר יהודי מעשן בן 55 ימות לפני שיגיע לגיל 56 – שווה ל-0.00703237, ואילו Y, ההסתברות שגבר יהודי בן 55 שאינו מעשן ימות לפני שיגיע לגיל 56 היא הרבה יותר נמוכה: 0.00305755.

כזכור, על פי לוח התמותה, ההסתברות שגבר בן 55 ימות לפני שיגיע לגיל 56 היא 0.00425. זה אומר שאם יש לנו 100000 גברים כאלה, אז בממוצע ימותו במהלך השנה 425 מהם. אם לעישון אין השפעה על ההסתברות למות, אז 30% מהמתים יהיו מעשנים: בערך 128 איש.

אבל אנחנו יודעים שההסתברות למות שונה למעשנים ולא מעשנים.

בין 100000 הגברים יש 30000 מעשנים, ולכל אחד מהם הסתברות למות השווה כאמור ל- 0.00703237. זה אומר שמתוכם ימותו 210 איש – 82 איש יותר ממה שהיה צריך להיות אילו לעישון לא הייתה השפעה. 82 האנשים האלה מתו לכן בגלל שהיו מעשנים.

כך אפשר לערוך את החישוב לכל מין, לכל גיל, ולכל קבוצת אוכלוסייה למעשה. אם עושים את החשבון עם כל הנתונים המדוייקים (שלא היו בידיי), אז מגיעים ל-8000 מחברים את תוצאות כל החישובים ומגיעים למספר הכולל.

מה בקשר לעישון פאסיבי

העקרון הוא אותו עיקרון, אם כי היישום יותר מסובך. אני חייב להודות שאני לא יודע באיזה שיטה משתמשים כדי לאמוד את מספר הנפגעים מעישון פאסיבי.

בגדול יש שתי אפשרויות: להגדיר באופן כלשהו משתנה המציין אם אדם נחשף לעישון פאסיבי או לא נחשף, ואז החישוב הוא כפי שנעשה קודם. אפשרות שניה היא להגדיר את רמת החשיפה לעישון פאסיבי כמשתנה כמותי ואז יחס הסיכונים פרופורציונאלי לרמת החשיפה. ברמה העקרונית החישוב נשאר אותו חישוב, אלא שכאן מדובר במשתנה רציף ולכן הפירוק להסתברויות לפי רמת החשיפה מסובך יותר.

כמה מילים בנימה אישית

וכאן אני רוצה לומר כמה מילים אישיות.

אני חושב שהנתון כי בכל שנה מתים בישראל 8000 איש מנזקי עישון הוא מזעזע. אם מחר תפרוץ חלילה מלחמה וימותו בה 8000 איש העם יצא לרחובות. אם השנה ייהרגו 8000 איש בתאונות דרכים, שר התחבורה והשר לביטחון פנים לא יוכלו להתחמק מאחריות. 8000 מתים בשנה פירושם יותר מ-20 מתים כל יום. אם חלילה יתרחש פיגוע וייהרגו בו 20 איש, אף אחד לא יחכה שהמספר יצטבר ל-8000 לפני שיידרשו לעשות משהו, ובצדק.

כמו שאמר סטאלין, מוות אחד הוא טרגדיה אבל 8000 מתים הם כנראה רק סטטיסטיקה. לסטטיסטיקה הזו אחראים המנהיגים שלנו ומקבלי ההחלטות. בשנת 2011 הוכרזה תכנית לאומית למלחמה בעישון ובנזקיו. בפועל לא קרה כמעט כלום. הגיע הזמן לתכנית חדשה, והפעם זו צריכה להיות תכנית חירום לאומית למלחמה בעישון. עכשיו.

 

 

 


הערות
  1. אתם מוזמנים לקרוא את דברי ההסבר בקובץ לוחות התמותה []
  2. נשאלת כמובן השאלה איך יודעים שאלה גורמי סיכון, והתשובה תתברר מייד []
  3. באופן יותר מדוייק: ההשפעה היא פרופורציונית לגבי הלוג של יחס הסיכונים []
  4. את זה עושים על ידי כך שקובעים ש-X הוא משתנה שמקבל שני ערכים: 0 אם האדם לא מעשן, 1 אם הוא כן מעשן. כאשר X שווה ל-1 נוסף הערך ביתא לסכום המשוקלל של גורמי הסיכון []
  5.  אני יודע שאני עושה פה סלט: נתונים מארצות הברית מסוף המאה העשרים ותחילת המאה העשרים ואחת, ונתונים מישראל. הכל נעשה לצורך הדגמה. אל תסיקו מסקנות מהמספרים שתראו בהמשך. []

איך לא לתפוס רוצח בעזרת התאמת DNA

לקראת סוף אפריל 2018 דווח כי משטרת סקרמנטו בקליפורניה עצרה אדם החשוד כי הוא ה-Golden State Killer, רוצח סידרתי שפעל באיזור בשנות ה-70 וה-80 של המאה העשרים. החשוד זוהה בעקבות התאמה של דגימות DNA שנלקחו בזמן חקירות מעשי הרצח ונתוני DNA שפורסמו באתר של אחת החברות המציעות לקהל הרחב ניתוח בסיסי של ה-DNA שלהם. כיצד מתבצעת ההתאמה ומה המשמעות של התוצאות? מכיוון שלא נמסרו נתונים לגבי תהליך הזיהוי במקרה זה, אסביר את הנושא בעזרת מקרה אחר, בעזרתו אדגים את תפקידה של הסטטיסטיקה בתהליך.

רצח דיאנה סילבסטר

דיאנה סילבסטר, אחות במקצועה, נרצחה בדירתה בסן פרנציסקו מספר ימים לפני חג המולד ב-1972, לאחר שנאנסה באכזריות. אישה ששהתה בדירה אחרת בבניין שמעה צעקות, ולאחר המתנה של כעשרים דקות החליטה לצאת מדירתה ולבדוק מה קורה. היא ראתה כי דלת דירתה של סילבסטר פתוחה, ואדם שעמד בפתח הדירה. לשאלתה ענה לה כי "אנחנו עושים אהבה", ולאחר מכן הלך לדרכו. האישה נכנסה לדירה ושם מצאה את גופתה העירומה של סילבסטר. המשטרה הוזעקה, האישה מסרה את עדותה כולל תיאורו של האדם שראתה. מגופתה של דיאנה נלקחו דגימות זרע, בין היתר. לאחר מספר ימים עצרה המשטרה אדם חסר בית שתיאורו התאים לתיאור שמסרה העדה כחשוד ברצח. המשטרה לא הצליחה למצוא ראיות מספיקות נגד החשוד והוא שוחרר. חשוד זה, אגב, הורשע באונס מספר חודשים לאחר מכן. נבדקו עוד כעשרים חשודים נוספים, אך לא בוצעו מעצרים נוספים. תיק הרצח, ובתוכו דגימות הזרע, נגנז והועבר לארכיון.

בשנת 2003, לאחר שפותחה טכנולוגיה לניתוח והתאמה של דגימות DNA, בדקה משטרת סן פרנציסקו האם יש התאמות בין דגימות DNA שנאספו ונשמרו במקרי רצח לא פטורים ובין דגימות DNA במאגר של עברייני מין שהורשעו במדינת קליפורניה. אמנם ה-DNA שנאסף מגופתה של סילבסטר לא נשמר היטב, ומתוך 13 האללים המשמשים לזיהוי (פרטים בהמשך) ניתן היה לקבל אינפורמציה רק על 5.5 אללים, עם זאת, נמצא במאגר אדם עם DNA התואם את אותם 5.5 אללים. אדם זה, ג'ון פאקט, נעצר כחשוד ברצח, הועמד לדין והורשע.

איך מבצעים התאמת DNA?

ההסבר שאתן מאוד פשטני ולא מדוייק, אך הוא מספיק לצורך הדיון בבעיה הסטטיסטית. DNA הוא מולקולה, שרשרת של חלבונים, הנמצאת בכל תא בגוף. כל התכונות הביולוגיות של האדם נקבעות על ידו. ה-DNA מתחלק ליחידות שנקראות אללים. יותר מ-99.9% מה-DNA זהה אצל כל בני האדם. השונות בין בני אדם (נניח צבע עיניים) נקבעת על ידי שאר ה-DNA. למרות הזהות של99.9% מה-DNA בין כל בני אדם, אין למעשה שני אנשים עם DNA זהה לחלוטין, אלא אם הם תאומים זהים.

מבחינה משפטית ופלילית, זיהוי של אדם נקבע על ידי 13 אללים ספציפיים. כדי לבדוק האם שתי דגימות DNA נלקחו מאותו אדם, משווים את 13 האללים בין שתי הדגימות. אם אין התאמה אפילו באלל אחד מבין השלושה עשר – מדובר בשני אנשים שונים. מצד שני, אם הדגימות נלקחו משני אנשים שונים – הסיכוי כי תהיה התאמה מלאה בין כל 13 האללים נמוך מאוד. עד כמה נמוך? יש כל מיני הערכות לכך. לפי ה-FBI, ההסתברות לכך היא בערך 1 ל-13 מיליארד.

ההשוואה מתבצעת על ידי השוואת שני גרפים המתקבלים מעיבוד דגימת ה-DNA במכשיר ייחודי. הגרף דומה לגרף המתקבל מדגימת א.ק.ג. 13 האללים המדוברים מתבטאים בגרף כ-"פיקים". ההשוואה נעשית בדרך כלל "לפי העין" על ידי מומחים בתחום.[1] לדוגמא אני מביא כאן גרפים של שתי דגימות DNA ממשפט אחר[2] מה דעתכם? האם יש זהות בין שתי הדגימות?

 

 

 

 

 

המומחים המטעם התביעה באותו משפט אמרו שכן. הטענה נדחתה על ידי השופט שטעה טעות סטטיסטית שאינה קשורה לניתוח ה-DNA עצמו.

אציין גם הקביעה שזיהוי אדם מתבסס של 13 האללים האלה מתבססת על הנחות ביולוגיות/גנטיות וכן על הנחות סטטיסטיות. לא אכנס כאן לדיון מפורט בעניין משתי סיבות: ראשית, אני לא ממש מתמצא בנושא, ושנית, במקרה של הנחות אחרות היה נקבע קריטריון זיהוי אחר, אבל הבעיה הסטטיסטית של הרשעה על ידי זיהוי DNA נשארת אותה בעיה.

משפט הרצח

במקרה הרצח של סילבסטר הייתה כאמור רק התאמה חלקית, בגלל תהליך ההתפרקות של דגימת הזרע במשך 30 השנים בהן הוא נשמר בארכיון. התובע במשפט ציין שההסתברות כי תהיה התאמה כזו בין שתי דגימות DNA שנלקחו משני בני אדם שונים נאמדה כ-1 ל-1.1 מיליון, ואני מניח כי נתון זה נכון. השופט החליט כי במשפט לא יובאו מומחים שידונו בפרשנות של ההסתברות שהתובע ציין להתאמת ה-DNA ובהשלכות הנובעות מכך, ובפרט לא הוצגו עדויות של סטטיסטיקאים מטעם ההגנה, וכפי שנראה מייד, היה להם מה לומר. כמו כן, הוא החליט כי לא המושבעים לא יקבלו מידע על הדרך בה אותר החשוד. הם הונחו לשקלל את הנתון על הסתברות ההתאמה עם עדויות "רגילות". עדת הראיה שראתה ככל הנראה את הרוצח כבר מתה. בפני המושבעים הוצגו, פרט לנתון של 1 ל-1.1 מיליון, תיאור של שלושת מקרי האונס בהם הורשע פאקט בעבר ותמונה ישנה של הנאשם משנות השבעים בה הוא נראה דומה לתיאור של הרוצח שמסרה העדה. במהלך הדיונים ביקשו המושבעים מהשופט כי יימסר להם עוד מידע לגבי האופן שבו הגיעו אל החשוד בעזרת דגימת ה-DNA, אך השופט סירב למסור אינפורמציה זו. הנאשם, כאמור, הורשע ברצח.

ניתוח סטטיסטי

הניתוח שאתאר כאן מתייחס רק לראיית ה-DNA, ואינו לוקח בחשבון ראיות אחרות. כדי לקבוע אשמה יש לשקלל, כפי שטען השופט בצדק, את הראיה הזו עם הראיות האחרות שהוצגו במשפט. אם זאת, אני טוען כי האופן בו הוצגה ראיית ה-DNA למושבעים היה מטעה, והשופט שגה בכך שלא הרשה לצדדים להציג את טיעוניהם, ולכן גרם לכך שהמושבעים יפרשו את הנתון הזה באופן שגוי.

טיעוני התביעה

המסר של התביעה בעניין התאמת ה-DNA היה פשוט: הסיכוי שתהיה התאמה בין שתי הדגימות הוא 1 ל-1.1 מיליון. לכן השתמע מדברי התובע כי הסיכוי שפאקט אינו הרוצח הוא 1 ל-1.1 מיליון. זה לא נכון. זוהי ההסתברות כי אם נבחר שני בני אדם באופן מקרי תהיה ביניהם התאמה באותם 5 וחצי אללים ספציפיים. זה נכון גם כאשר נשווה את ה-DNA שלי ל-DNA שלך.

ההסתברות שהתביעה צריכה להציג היא הסתברות מותנית: ההסתברות שהנאשם הוא הרוצח כאשר ידוע לנו כי קיימת התאמת DNA. זה נראה פשוט, אבל צריך להיזהר: בהחלט ייתכן כי הנאשם אינו הרוצח גם אם קיימת התאמת DNA. ייתכן כי יש אדם נוסף שקיימת בינו ובין דגימת ה-DNA התאמה, ואולי אפילו יותר מאחד, ואם כך, ייתכן כי האדם הנוסף הזה הוא הרוצח. וזה מה שההגנה התכוונה לטעון.

טיעוני ההגנה (שלא הוצגו למושבעים)

למעשה היו להגנה שני טיעונים עיקריים. ראשית הם טענו כי יש עדויות אמפיריות וחישוביות לכך שהתאמת DNA חלקית נפוצה למדי. הם הסתמכו על מחקר שנערך באריזונה. חוקרת בשם קתרין טרויר בדקה כ-65,000 דגימות DNA. היא מצאה 122 זוגות של דגימות בהם הייתה התאמה ב-9 אללים, ו-20 זוגות בהם הייתה התאמה של 10 אללים. ההסתברויות להתאמות כאלה הרבה יותר קטנות מ-1.1 מיליון. סביר להניח כי במדגם כזה יימצאו אפילו יותר זוגות תואמים ב-5.5 אללים.

קל לחשב את ההסתברות הזו. זוהי למעשה בעיית ימי ההולדת. הקוראים הוותיקים שלי יודעים כי אם בחדר אחד מתאספים 23 איש, ההסתברות כי יהיה בחדר זוג אנשים שחולקים יום הולדת משותף גדולה מ-50%. בבעיית התאמת ה-DNA, מוחלף יום ההולדת בפרופיל ה-DNA. בבעיית ימי ההולדת ההסתברות ששני בני אדם יחלקו יום הולדת היא 1 ל-365. כל מה שצריך זה להחליף את ההסתברות להתאמת ימי הולדת בהסתברות להתאמת DNA ולערוך את החשבון.  ההסתברות היא כמעט 1. למעשה, ההסתברות כה קרובה ל-1 עד כדי כך שתכנת R בה השתמשתי לחישוב נתנה את התוצאה 1, מכיוון שרמת הדיוק המקסימלית שלה היא רק כ-300 ספרות לאחר הנקודה העשרונית. ה-DNA שנלקח מזירת הרצח נבדק מול מאגר DNA שהכיל כ-338000 דגימות של עברייני מין מורשעים, גברים לבנים, שהיו מבוגרים מספיק כדי לבצע את הרצח בשנת 1972. אפשר לומר בביטחון כמעט מוחלט שיש ביניהם שני אנשים שה-DNA שלהם תואם ב-5.5 אללים. אז לכאורה אפשר לומר שסביר מאוד כי תימצא התאמה בין ה-DNA של פאקט ובין הדגימה שנלקחה מזירת הרצח. אבל רק לכאורה, כי גם האמירה הזו אינה נכונה. אנחנו חישבנו את ההסתברות כי יימצא זוג אנשים כלשהו שביניהם יש התאמת DNA. השאלה הנכונה היא מה ההסתברות כי במאגר יימצא אדם שה-DNA שלו תואם ל-DNA שנלקח מזירת הרצח.

גם בשאלה הזו דנתי בפוסט על בעיית ימי ההולדת[3], וההגנה ביקשה להציג את ההסתברות הזו בפני המושבעים. הטיעון שלהם השתמש באנלוגיה של הגרלה (כגון הגרלת מפעל הפיס). האנלוגיה לכרטיס הגרלה היא אדם כלשהו, וה-DNA מזירת הפשע הוא המספר הזוכה. אם אתה קונה כרטיס אחד להגרלה שבה יש 1.1 מיליון כרטיסים, הסיכוי כי תזכה הוא 1 ל-1.1 מיליון. אם אתה קונה שני כרטיסים, הסיכוי שלך לזכות הוא 2 ל-1.1 מיליון, וכן הלאה. המשטרה בדקה מאגר של 338000 דגימות. הם קנו 338000 כרטיסים. הסיכוי שלהם לזכות הוא לכן 338000 ל-1.1 מיליון, שזה בערך 0.31. ההגנה טענה לכן כי הסיכוי שיימצא במאגר מישהו שה-DNA שלו מתאים לדגימה הוא בערך 1 מתוך 3. פאקט החזיק למזלו (הרע) בכרטיס הזוכה. לכן, גם אם זכה, אין למהר להסיק כי הוא הרוצח. ייתכן והיו מוצאים מישהו אחר. הסיכוי שימצאו מישהו הוא 30%.  יותר מכך: במטרופולין סן פרנציסקו גרים מעל 3 מיליון איש, כמחציתם גברים. גם אם ניקח בחשבון רק את הגברים הלבנים שהינם די מבוגרים כדי לבצע את הרצח 30 שנה קודם לכן, חייב להיות שם מישהו עם DNA תואם לדגימה[4]. אבל גם החישוב הזה לא מדוייק.

החישוב האחרון מניח כי לכל אדם במאגר יש DNA שונה מזה של כל האחרים. שוב, ההנחה הזו לא נכונה. למעשה ראינו כי ההסתברות שיש במאגר שני אנשים עם DNA תואם ב-5.5 אללים היא כמעט ודאית.

כמו כן, ייתכן כי יש במאגר 2, 3 או אפילו יותר אנשים עם DNA תואם לדגימה. זו לא בעיית מפעל הפיס. זו בעיית לוטו. ה-DNA של כל אדם הוא המספרים שבחר. בהגרלת לוטו ייתכן מאוד כי שני אנשים ייבחרו את אותם המספרים, ופעמים רבות הפרס הראשון מתחלק בין מספר זוכים. אותנו מעניינת ההסתברות כי יהיה לפחות זוכה אחד.

אפשר לחשוב על הבעיה גם באופן הבא: יש לכם מטבע שהסיכוי שלו ליפול על עץ הוא 1 ל-1.1 מיליון. אתם מטילים אותו 338000 פעמים. מה הסיכוי כי המטבע ייפול פעם אחת על עץ? מה הסיכוי כי הוא ייפול על עץ יותר מפעם אחת? מה הסיכוי כי הוא לא ייפול על עץ אפילו פעם אחת (כלומר 338000 פעמים תקבלו פלי)? אפשר לחשב את הסיכויים האלה על ידי שימוש בהתפלגות פואסון, או בניסוח יותר מדוייק, הקירוב הפואסוני להתפלגות הבינומית, כאשר הפרמטר של ההתפלגות הוא 0.31. כאשר עורכים את החישוב מקבלים כי ההסתברות שהמטבע ייפול על עץ בדיוק פעם אחת, כלומר יש בדיוק אדם אחד במאגר אשר ה-DNA שלו מתאים לדגימה מזירת הפשע, היא 0.226. ההסתברות כי במאגר לא יימצא אפילו אדם אחד עם DNA תואם היא 0.736, וההסתברות כי יש במאגר לפחות אדם אחד עם DNA תואם לדגימה מזירת הפשע היא לכן רק 0.265 ולא 0.31 כפי שההגנה רצתה לטעון. יותר קרוב ל-1 מתוך 4 מאשר ל-1 מתוך 3, אך עדיין הסתברות גבוהה למדי.

המשמעות של התוצאה הזו כי יש הסתברות של מעל 25% כי הנאשם זכאי בהינתן ההתאמה בין ה-DNA שלו ובין ה-DNA שנלקח מזירת הפשע, ולא 1 ל-1.1 מיליון, כמו שהתובע רצה שהמושבעים יחשבו. לדעתי החישוב הזה מספיק כדי לעורר ספק סביר.

גישה בייסיאנית

יש עוד דרך להסתכל על הבעיה. אני לא חסיד של הגישה הזו, אבל אציג אותה בכל זאת. הבעתי בהרחבה את דעתי על הגישה הזו בפוסט שעסק במה שכונתה "מכונת האמת המוחלטת".

הדיון עד כה נערך תחת ההנחה שהנאשם זכאי, כפי שמקובל במערכות משפט במדינות דמוקרטיות. ראינו כי תחת ההנחה הזו ההסתברות כי הנאשם אשם היא כ-74%. אבל, מה הסתברות שתהיה התאמת DNA תחת ההנחה שהנאשם אשם? התשובה לשאלה הזו היא כמובן 100%, כלומר 1.

כזכור, אנחנו מתעניינים בהסתברות כי הנאשם אשם בהינתן התאמת ה-DNA. כאן המקום לקרוא לדגל את נוסחת בייס:

 

 

 

 

 

 

ולאחר שעשינו את כל התרגיל הזה, כל מה שצריך זה להציב בנוסחה את ההסתברות שהנאשם אשם ואת ההסתברות המשלימה שהנאשם זכאי, ולהחליט האם התוצאה מעלה ספק סביר.

הנה הבעיה שלי: אם הנאשם אשם, ההסתברות שהוא אשם, לדעתי לפחות, שווה ל-1, ואז אם נציב את זה בנוסחה נקבל 1. ואם הנאשם זכאי, אז לדעתי ההסתברות שהוא אשם היא אפס, ואם נציב את זה בנוסחה נקבל אפס. זה לא ממש עוזר.

כאן יבוא הסטטיסטיקאי הבייסיאני ויאמר לכם כי ההסתברות שהנאשם אשם היא הסתברות סובייקטיבית, והיא למעשה ביטוי לרמת האמונה האפריורית שלנו כי הנאשם אשם (או זכאי). כאמור, אני לא מקבל את הטיעון הזה. לדעתי עלינו להניח כי הנאשם זכאי עד שתוכח אשמתו. במילים אחרות, אני אומר לסטטיסטיקאי הבייסיאני כי עליו להאמין מראש כי ההסתברות שהנאשם אשם היא אפס, ומכאן אני ממשיך את הטיעון ואומר כי כל התרגיל הזה חסר משמעות.

אבל יש מי שחושבים אחרת. יבוא מישהו ויגיד: "אני לא יודע אם הוא זכאי או אשם, ולכן אציב בנוסחה את הערך 0.5 להסתברות כי הנאשם אשם". החישוב ייתן לכן כי ההסתברות שהנאשם אשם בהינתן התאמת ה-DNA היא בערך 57.5%. אבל יכול לבוא מישהו אחר ולומר כי הנאשם ביצע בעברו שלושה מעשי אונס הדומים לאונס שבוצע בנרצחת סילבסטר, ולכן הוא מאמין כי ההסתברות שהנאשם אשם היא 0.75 (למה? ככה). עכשיו החישוב ייתן תוצאה של 80%. ספק סביר? אני לא יודע אבל מניח שכן.  ברור שככל שנאמין יותר באשמת הנאשם, כך נקבל כי ההסתברות שהוא אשם בהינתן התאמת ה-DNA גבוהה יותר. במילים אחרות: אם מאמינים שהנאשם אשם מסיקים כי הוא אשם.

במקום אחר ברשת נתקלתי בטיעון בייסיאני אחר, שטוען כי יש לקחת בחשבון את ההסתברות כי הרוצח נמצא בכלל בתוך המאגר של 338000 הדגימות. אם ההסתברות כי הרוצח נמצא בתוך המאגר שווה לאפס, אז ברור כי הנאשם זכאי. אם ההסתברות הזו שווה ל-1, אז הנאשם אשם (בהנחה שאין עוד אדם במאגר שה-DNA שלו תואם לדגימה מזירת הרצח). מה קורה אם ההסתברות הזו נמצאת איפשהו בין אפס לאחד?

אם נסמן את ההסתברות הזאת ב-x, ונזכור כי ההסתברות שהנאשם אשם אם הרוצח לא נמצא במאגר היא בערך 0.27, נקבל בעזרת נוסחת בייס כי ההסתברות שהנאשם אשם היא:

 

 

ואנחנו שוב עומדים בפני השאלה: מהי ההסתברות כי הרוצח נמצא במאגר? במילים אחרות: מה ההסתברות כי הרוצח הוא מישהו שהורשע בעבירת מין נוספת/אחרת בקליפורניה ונלקחה ממנו דגימת DNA? עד כמה הידיעה כי ה-DNA של החשוד שנעצר זמן קצר לאחר הרצח ושוחרר לא נצא במאגר (כי הוא מת לפני שהחלו באיסוף דגימות DNA מעבריינים מורשעים)[5] תשפיע על ההערכה שלכם ל-x?

כמו קודם – הניתוח הזה לא מוביל אותנו לשום מקום, כי אין לנו שום דרך אמינה לאמוד את x.

סיכום

זיהוי רוצחים או פושעים אחרים על ידי השוואת דגימות DNA שנלקחו מזירת הפשע למאגרי DNA הוא בעייתי, וטמן בחובו בעיות סטטיסטיות לא פשוטות, וזאת בנוסף לבעיות משפטיות ואחרות.

לקריאה נוספת

 


הערות
  1. אני מניח כי במשך הזמן פותחו שיטות יותר אובייקטיביות להשוואה או שלפחות נעשה מאמץ לפתח שיטות כאלה. []
  2. הגרפים נלקחו מהספר Math on Trial. ראו הפניות לקריאה נוספת בסוף הפוסט. []
  3. זוכרים מה קרה לג'וני קארסון? []
  4. או באופן יותר מדוייק: ההסתברות כי יש שם אדם כזה גבוהה []
  5. איש לא העלה בדעתו להוציא את הגופה מהקבר ולקחת ממנה דגימת DNA []