חיפוש באתר

קישורים

RSS סטטיסטיקה ברשת

עמודים

קטגוריות

תגיות

ארכיב עבור תגית המשפטים הגדולים של הסטטיסטיקה

סטטיסטיקאי בפריז

אין כמו ביקור בפריז לשיפור מצב הרוח והנפש. ביום רביעי של השבוע שעבר נסענו זוגתי ואני לחופשה של חמישה ימים בפריז. מועד הנסיעה, שלא במקרה, היה יום הולדתי הראשוני ה-15. זה לא היה ביקורנו הראשון בעיר, ולכן הביקור הנוכחי דילג על "אתרי החובה" השונים של העיר. הפעם בחרנו לסייר בעיקר ברחובות וכיכרות שעדיין לא ביקרנו בהם, בגנים ובשווקים. אמנם תיכננו ביקור במוזיאון האורנז'רי, אך הוא היה סגור עקב שביתה. ביקרנו במוזיאון אחד בלבד – מוזיאון המוזיקה, ואני ממליץ לכולם בחום לבקר בו.

יש מוזיאון אחד בפריז שאני רוצה מאוד לבקר בו, אך מוזיאון כזה אינו קיים: מוזיאון המתמטיקה. אמנם, ב"ארמון התגליות" (Palais de la découverte) יש תערוכה קטנה שעוסקת במתמטיקה, אך היא מאכזבת למדי (ביקרתי בה לפני כמה שנים).

פריז היא המשכן הטבעי למוזיאון מתמטיקה. היא הייתה עיר הבירה של המתמטיקה העולמית במאה ה-18, ובמשך מהמאה ה-19 הייתה עדיין אחד ממרכזי המתמטיקה העולמיים (יחד עם ברלין וגטינגן). בפריז נשא דויד הילברט את נאומו המפורסם בו הציג את 23 הבעיות שיתוו את כיוון המתמטיקה במאה ה-20. בין המתמטיקאים הגדולים שחיו ופעלו בעיר (ואני דולה את השמות מהזיכרון בלבד) ניתן למנות את קושי, לפלס, לגראנז', גלואה, דקארט, האדמר, פואנקרה, ג'רמיין, פורייה, וגם את הרוזן בופון (שמייד אכתוב עליו בהרחבה). אני תמיד מופתע מכך שהעיר פריז די מבליעה את ההיסטוריה המפוארת שלה בתחום הכל כך חשוב הזה.

אחת הדרכיםבהן חולקת פריז כבוד לאנשים היא על ידי קריאת רחובות על שמם. בפריז יש כ-100 רחובות וככרות הנקראים על שם מתמטיקאים, לאו דווקא צרפתיים. יש גם רחובות על שם ברנולי, לייבניץ, ליאונרדו, אך אין רחובות על שם גאוס ורימן. יש כיכר בה נפגשים רחובות ניוטון, גליליאו ואוילר. הנה השלט של רחוב דקארט, ברובע הלטיני:

במרחק מספר דקות הליכה מרחוב דקארט נמצא רחוב בופון, המוביל אל הגנים הבוטניים של פריז (Jardin des Plantes) ובמרכזם ניצב, הפלא ופלא, פסלו של הרוזן בופון!

הרוזן בופון ואני

הרוזן בופון היה איש אשכולות קלאסי של המאה ה-18: הוא היה חוקר טבע, מתמטיקאי, קוסמולוג ועורך אנציקלופדיות. מתברר גם שהוא היה בין מקימי הגנים הבוטניים ומנהלם, ולכן אין זה פלא שפסלו ניצב במרכזם.

לפני כחמש שנים כתבתי כאן על רשימת 100 המשפטים הגדולים של המתמטיקה שהופיעה באחד מאתרי האינטרנט. במקום ה-99 של אותה רשימה הופיעה בעיית המחט של בופון. מהי בעיית המחט של בופון?

תארו לעצמכם דף נייר גדול, עליו משורטטים קווים מקבילים שהמרחק בינם קבוע. נסמן את המרחק בין הקווים באות d. ניקח מחט, שאורכה L, (כאשר L<d), ונטיל אותה על הגליון. מה ההסתברות כי המחט תחצה את אחד הקווים?

בשרטוט שלמעלה מוצגות 7 מחטים, שמתוכן 4 חוצות קווים. הניסוי שתואר למעלה נותן אמדן להסתברות המבוקשת: 4/7.

בופון חישב ומצא כי ההסתברות שהמחט תחצה את אחד הקווים, P, היא

במקרה המיוחד בו אורך המחט שווה למרחק בין הקווים (כלומר L=d), מקבלים כי P=2/π.

π הוא, כמובן, היחס בין היקף המעגל וקוטרו. איך הוא הגיע לכאן? כדי לחשב את ההסתברות נחוצים שני ערכים: מרחק מרכז המחט מהקו הקרוב, והזוית בין המחט ובין הקו. עם הזווית מקבלים כבונוס את הסינוס שלה, והוא מכניס את פיי לתמונה.

נחמד, אבל למה פתרון הבעיה הזו ראוי להמנות בין 100 המשפטים הגדולים של המתמטיקה?

התשובה המפתיעה: בעזרתה ניתן לחשב את ערכו של פיי!

אפשר לבצע את הניסוי של הטלת המחט מספר גדול של פעמים ולאמוד את ההסתברות P על ידי היחס בין מספר הפעמים בהן המחט חצתה את הקו לבין מספר ההטלות. חוק המספרים הגדולים מבטיח כי האמדן קרוב לערך האמיתי של ההסתברות, אם מספר הנסיונות מספיק גדול. כעת, כשיש לנו אמדן טוב ל-P, וידועים לנו ערכי L ו-d, אפשר לחשב את פיי באופן הבא:

או פשוט π=2/P אם d=L.

ב-1901 פרסם המתמטיקאי האיטלקי מריו לזריני קירוב של פיי שהשיג על ידי ניסוי בופון. הוא הטיל מחט שאורכה היה 5/6 מהמרחק בין הקוים 3408 פעמים, והמחט חצתה את הקוים 1808 פעמים. האמדן שקיבל לערכו של פיי היה לכן 355/113, או …3.1415929 בעוד שהערך האמיתי הוא …3.1415926. אמנם, לזריני בחר בקפידה את אורך המחט ואת מספר ההטלות (ויש הטוענים יותר מדי בקפידה), אך התוצאה עדיין מרשימה. מי שמעוניין יכול לנסות בעצמו בבית, או להשתמש באחד מהסימולטורים של הניסוי ברשת.

העקרון לפיו מחושב הערך של פיי מתוצאה של ניסוי מקרי ידוע היום בסטטיסטיקה כ"שיטת מונטה קרלו". כיום יש שימוש נרחב בסימולציה לחישוב ערכים של פרמטרים שונים, הודות ליכולות המחשוב המודרניות. מדהים ששיטה זו מתבססת על עקרונות שהיו ידועים כבר במאה ה-18.

מקבץ 4

שלום לכולם. הפעם מקבץ ארוך למדי, עקב משך הזמן הארוך מאז המקבץ הקודם.

  • השבוע צוינו 100 שנה למותה של פלורנס נייטינגייל.
  • בעיית המעטפות (עליה כתבתי לפני כשנתיים)  הרימה שוב את ראשה, הפעם בבלוג של וייאם בריגס, שהקדיש שתי רשימות לנושא. את הרשימה הראשונה אפילו קראתי. (המשך הפריט גולש לפרטים טכניים, אז מי שלא מעוניין מוזמן פשוט לדלג עליו). בתחילה בריגס מציג את החישוב השגוי לפיו החלפת המעטפות תביא לתוחלת רווח של 1.25X (כאשר  X הוא הסכום במעטפה שקיבלת), ולכן מתקבלת המסקנה הפרדוקסלית לפיה כדאי להחליף את המעטפה שוב ושוב ושוב. אולם בריגס אינו מסיק מכך כי יש לנסות לערוך את החישוב בצורה נאותה יותר. המסקנה של בריגס היא שיש להשליך את התוחלת לכל הרוחות בבעיות החלטה (טוב, הוא השתמש במלים קצת יותר מעודנות). וכיוון שכך, הוא פונה מייד אל העולם הבייסיאני (הבייסיאניים לא משתמשים בתוחלת? אלה חדשות אפילו בשבילי), ומתחיל להציג שלל פתרונות מהסוג שגרמו לי לא להתלהב מהענף הזה של הסטטיסטיקה. עלי לציין כי הגבתי לרשימה וציינתי מהיכן מגיע הפרדוקס, ומדוע תוחלת הרווח מהחלפת המעטפות היא אפס (ולכן לא משנה אם מחליפים או לא). בתגובה בריגס דרש ממני "להוכיח" (?!) כי החישוב שלו לפיו התוחלת היא 1.25X אינו נכון. אני לא מבין את זה. הוא הוא יטען כי 2 ועוד 2 שווים ל-5 ואני אטען כי התשובה הנכונה היא 4 (למניעת תשובות מתחכמות – אני מדבר על שדה הממשיים), האם אדרש להוכיח כי התשובה 5 אינה נכונה? בריגס הוסיף וטען כי התוחלת הוא מושג שכיחותי (frequentist) ואילו ניסוי המעטפות נערך פעם אחת בלבד, ולכן מושג התוחלת אינו תקף. אני לא מבין את הטיעון הזה. ואם נערוך סדרה של ניסויים זהים, אז הטיעון שלי יהיה תקף לפתע? אשמח למי שיאיר את עיניי. את הרשימה השניה של בריגס כבר לא קראתי, אבל אתם מוזמנים.
  • נתן יאו מהבלוג Flowing Data העוסק בויזואליזציה של נתונים כתב רשימה על 7 הכללים הבסיסיים ליצירת גרפים ותרשימים. 7 הכללים הם: בדוק את הנתונים, הסבר את הקידוד, הוסף תוויות לצירים, ציין את יחידות המדידה, שמור על פרופרציות גיאומטריות נכונות, ציין את מקור הנתונים, וזכור מי קהל היעד שלך. כעת פוצח יאו בסדרה של שבע רשימות שתסביר ביתר פירוט את כל אחד מהכללים. הנה הלינק לרשימה הראשונה בסדרה: בדוק את הנתונים.
  • שמוליק הביא בבלוג שלו דוגמא בה הכלל החמישי של יאו מופר בגסות.
  • והנה הצגה גרפית יפה (בוושינגטון פוסט) המשווה בין תכניות המס של שני נשיאי ארה"ב האחרונים, בוש ואובאמה.
  • רנדום ג'ון מדווח על הרצאה של פרנק הארל בכנס useR!  שעסקה ב"אלרגיה לאינפורמציה". תופעה זו באה לידי ביטוי בהתנגדות להשיג אינפורמציה הדרושה לקבלת החלטה נכונה ובהתעלמות מאינפורמציה חשובה וזמינה. הוא מביא לינק למצגת של גירסה יותר ישנה של ההרצאה.
  • ועוד דיווח מכנס: ג'ון ג'ונסון מחברת קאטו מדווח על התובנות שלו מכנס JSM2010 שנערך בואנקובר בתחילת החודש.
  • למתעניינים בכריית נתונים (שלאחרונה הצטרפתי לשורותיהם): ג'ון אלדר כותב על עשרת הטעויות האפשריות הגדולות ביתר בדאטה מיינינג. כשערך את ספירת המלאי גילה שיש לו למעשה 11 טעויות ברשימה. הפתרון שלו: הן דורגו החל מ-0 ועד 10. זה לא רעיון מקורי. גם בליגת המכללות הנקראת "Big10" יש 11 מכללות (שימו לב ללוגו).
  • וזה לא שייך למקבץ, אבל הפריט הקודם הזכיר לי אנקדוטה על המתמטיקאי נורברט ווינר, אולי האבטיפוס של דמות הפרופסור המפוזר. באחת הפעמים שעבר דירה, ביקשה ממנו אשתו לברר כי אל הדירה החדשה הגיעו 10 מזוודות. ווינר חזר ודיווח לרעייתו כי ספר 9 מזוודות בלבד, והדגים בנוכחותה את הספירה החוזרת: 0, 1, 2,…
  • כריסטיאן רוברט (Xian) מאוניברסיטת דופין בפריז החליט להעביר סמינר על המארים הקלאסיים של הסטטיסטיקה. כדי להחליט אלו מאמרים ילמדו בסמינר, הוא ערך סקר בין קוראי הבלוג שלו. בין המועמדים: מאמרם הקלאסי של ניימן ופירסון, מאמרו של ברדלי אפרון (מספר 8 ברשימת 15 הסטטיסטיקאים הגדולים שערכתי), מאמרו של קוקס (מספר 10) על ניתוח השרדות, ועוד רבים וטובים. בולטים בהעדרם מהרשימה  מאמר כלשהו מאת פישר (עליו כתבתי כאן רבות, הקישור לביוגרפיה קצרה שכתבתי עליו בפורום מתמטיקה של התפוז) ומאמרו של בייס (עליו כתבתי ברשימה "הכוכב, הסמים והכומר"). כשצפיתי בתוצאות הסקר הופתעתי: המאמר של ניימן ופירסון הגיע רק למקום החמישי, אותו הוא חולק במשותף עם מאמרו של הייסטינגס על שיטת MCMC. למקום הראשון הגיע מאמרו של אפרון על שיטת הבוטסטרפ; במקום השני: דמפסטר, ליירד ורבין במאמרם על שאלגוריתם EM. שלישי היה מאמרו של רוברט טיבשירני על שיטת הלאסו, ובמקום הרביעי – ישראל על המפה: מאמרם של יוסי הוכברג ויואב בנימיני מאוניברסיטת תל אביב על גישת ה-FDR  לבדיקת השערות מרובות.
  • תמר בן יוסף כותבת על התייקרות הדירות בישראל, ובפרט על הקשיים והכשלים במדידת מחירי הדירות.
  • בבלוג עבודה שחורה כותב יפתח גולדמן על סקר שערך משרד התמ"ת אודות התפלגות השכר בישראל ומסקנתו: התפלגות השכר מוּטה, והשכר הממוצע לא מייצג את התפלגות השכר במשק. קוראי הבלוג הותיקים, שקראו את רשימתי על המנהל והפועלים, בודאי לא מופתעים.

הכוכב, הסמים והכומר

לפני כחודשיים דיווחתי כאן על השעייתו של סופרסטאר הבייסבול  מני רמירז ל-50 משחקים, לאחר שבבדיקת סמים שנערכה לו התקבלה תוצאה חיובית. עם הדיווח העליתי נקודה למחשבה: לאור העובדה שבבדיקה התקבלה תוצאה חיובית, מה ההסתברות כי רמירז אכן השתמש בסמים אסורים? נתתי גם רמז עבה לפתרון: מספר 4 ברשימת 15 הסטטיסטיקאים הגדולים.

הבטחתי רשימה בנושא, והנה אני סוף סוף מקיים. לזירוז העניין תרם דוברמן, שפרסם בבלוג שלו את החידה הזו. ההקשר היה שונה (שפעת החזירים במקום סמים אסורים), אבל העקרון זהה. מי שמעוניין לקרוא את הפתרון של דוברמן יכול לקרוא אותו בלינק הזה, אם כי אני מייד אתן הסבר משלי וגם ארחיב על הנושא.

ובכן, מה ההסתברות כי רמירז אכן השתמש בסמים אסורים אם בדיקת הסמים שלו הייתה חיובית? התשובה האמיתית והכנה ביותר שאני יכול לתת לכם היא שאני לא יודע. חסרים נתונים. אז בואו ונמציא נתונים לצורך התרגיל. בדיקת הסמים יכולה לטעות. יכול להיות שנבדק כלשהו משתמש בסמים אסורים, ובכל זאת מתקבלת תוצאה שלילית בבדיקה. גם יכול להיות שהנבדק לא השתמש בסמים אסורים ותוצאת הבדיקה בכל זאת הייתה חיובית משום מה (רמירז לא טען זאת, דרך אגב). אלה הן שתי הטעויות שעשויות לקרות בכל תהליך קבלת החלטות. אבל באיזה סיכוי עשויה כל טעות להתרחש? אני אניח, כמו דוברמן בחידה שלו, כי לכל טעות יש סיכוי של אחוז אחד, כלומר 0.01. (את הסיכויים האמיתיים יודעים  מן הסתם יצרני ערכת הבדיקה). עדיין אין מספיק נתונים. כדי לענות על השאלה צריך גם לדעת מהו אחוז משתמשי הסמים באוכלוסיה הרלוונטית, ואת האחוז הזה קשה מאוד לברר. אני מעריך את המספר הזה ב-5 עד 10 אחוז. מסמך פנימי של ליגת ה-MLB שהודלף לאחרונה אמר כי בשנת 2003 התקבלו תוצאות חיוביות אצל 104 שחקנים שנבדקו (אשמח ללינק – לא מצאתי את הידיעה המקורית). בליגה יש כ-1000 שחקנים, ולכן אחוז המשתמשים הוא בסביבות 10. יש הסבורים כי "תקופת הסטרואידים" שהחלה לקראת סוף שנות התשעים של המאה הקודמת כנראה חלפה כבר מן העולם. אני סבור כי השחקנים פשוט עברו להשתמש בחומרים חדשים, שבבדיקות הנוכחיות לא מזהות. יש להם תמריץ כלכלי לכך. בואו ניקח את המספר העגול של 10% לצורך התרגיל.

נניח שכל 1000 השחקנים נבדקים. מתוכם 100 משתמשים בסמים אסורים, על פי הנחתנו, ומכיוון שהבדיקה תתן תוצאה חיובית אם הנבדק משתמש בסמים ב-99 אחוז מהמקרים, נקבל (תיאורטית) 99 תוצאות חיוביות ותוצאה שלילית אחת. 900 השחקנים האחרים נקיים, ועבור 99% מהם תוצאת הבדיקה תהיה שלילית. כלומר, יתקבלו 891 תוצאות שליליות , ואילו 9 שחקנים חסרי מזל יקבלו תוצאה חיובית  (ואלי יושעו) הגם שלא השתמשו בסמים אסורים. נרכז את המספרים האלה בטבלה:

תוצאת הבדיקה

חיובית

שלילית

סה"כ

משתמש בסמים אסורים?

משתמש

99

1

100

לא משתמש

9

891

900

סה"כ

108

892

1000

מתוך 108 שחקנים עבורם התקבלה תוצאה חיובית, 99 אכן משתמשים בסמים, ולכן ההסתברות כי שחקן שתוצאת הבדיקה שלו חיובית אכן משתמש בסמים היא 99/108 כלומר כמעט 92%.

שימו לב כי התוצאה תלויה בהנחה הראשונית על אחוז השחקנים המשתמשים בסמים, שאינו ידוע לנו. אם האחוז הזה הוא רק 5% ולא 10%, אז ההסתברות כי השחקן "שלנו" אכן השתמש בסמים תהיה "רק" 84%.

עכשיו בואו נעזוב את החישובים, ונעבור לדיון עקרוני בתרגיל שנעשה. אנו התמקדנו בשני מאורעות. צפינו במאורע "בבדיקת הסמים התקבלה תוצאה חיובית" והתעניינו במאורע "השחקן שנבדק משתמש בסמים אסורים". כמו כן היו נתונות לנו מספר הסתברויות. הייתה ידועה לנו, בין היתר ההסתברות כי תוצאת בדיקת הסמים היא חיובית כאשר ידוע כי השחקן הנבדק משתמש בסמים אסורים. אבל ההסתברות שעניינה אותנו באמת הייתה ההסתברות כי השחקן הנבדק משתמש בסמים אסורים כאשר ידוע כי תוצאת בדיקת הסמים היא חיובית. שתי ההסתברויות שתיארתי הן הסתברויות מותנות, אבל מתארות מצבים שונים. אחת מתארת הסתברות של מאורע שקורה בהווה (תוצאת הבדיקה חיובית) בהנתן מאורע שקרה בעבר (השחקן השתמש בסמים אסורים). השניה מתארת הסתברות של מאורע שקרה בעבר בהנתן מאורע שקרה בהווה. החישוב שלנו "הפך" את כיוון זרימת הזמן: מההווה לעבר במקום מעבר להווה. וכזכור, כל התרגיל שלנו לא היה מתאפשר ללא הנחה אפריורית כלשהי על אחוז השחקנים המשתמשים בסמים אסורים. הבדיקה אפשרה לנו לעדכן את ההסתברות האפריורית לכך שהשחקן השתמש בסמים אסורים, ולהחליף אותה בהסתברות אפוסטריורית.

הנה תיאור אפשרי אחר של התהליך: בהתחלה לא היה לנו כל ידע לגבי הרגלי השימוש של השחקן המסוים בסמים אסורים, ולכן הנחנו כי הסיכוי לכך שהוא משתמש בסמים כאלה שווה לפרופורציית השחקנים המשתמשים בסמים. הבדיקה שנערכה ותוצאתה נתנו לנו אינפורמציה חדשה, וממנה למדנו כי ההסתברות שהשחקן משתמש בסמים גבוהה הרבה יותר. החישוב שעשינו הוא מעין ביטוי מתמטי לתהליך למידה.

הראשון שניסח את התרגיל ההסתברותי הזה בכתובים היה כומר אנגלי שחי לו במאה ה-18, ושמו תומאס בייס. בייס היה ידוע כמי שעוסק במתמטיקה, ואף היה חבר החברה המלכותית, אם כי בימי חייו לא פרסם אף לא מאמר אחד שתיעד את עבודתו. המאמר המתמטי היחיד שהתפרסם תחת שמו הופיע רק שנתיים לאחר מותו, וזהו למעשה מכתב ששלח לידידו ג'ון קאנטון. במכתב תיאר בייס את הדרך לחשב "הסתברות מותנה הפוכה" (שתיארתי זה עתה). הדוגמא שהביא בייס עסקה, אגב, בסיכויי הנצחון במשחק ביליארד, במיטב המסורת של התפתחות תורת ההסתברות בהתאם לצרכיהם של המהמרים. למעוניינים לקרוא את המאמר עצמו, הנה קישור לקובץ pdf. עותק מקורי של המאמר, דרך אגב, יעלה לכם כ-4200 דולר, אם תמצאו מישהו שמוכן למכור.

הקוראים הותיקים של הבלוג הזה אמורים לדעת כי הזכרתי את בייס בעבר. הוא מופיע במקום ה-4 ברשימת 15 הסטטיסטיקאים הגדולים שערכתי. בעבר קוננתי על כך שמשפט בייס לא הופיע ברשימת 100 המשפטים הגדולים של המתמטיקה שערך מישהו. במסגרת התחקיר לרשימה זו הגעתי ל"פרוייקט מילניום" שנערך על ידי המרכז למדעים קוגניטיביים אוניברסיטת מינסוטה, שניסה לבחור ולדרג את 100 העבודות המשפיעות ביותר על המדעים הקוגניטיביים. מאמרו של בייס היה בין 306 העבודות המועמדות, אך פאנל המומחים שביצע את מלאכת הדירוג לא חשב שהעבודה ראויה דיה כדי להכלל ב-Top 100.

כפי שציינתי כאן בעבר, על הבסיס שהניח בייס צמח ענף שלם של הסטטיסטיקה שנקרא כמובן "סטטיסטיקה בייסיאנית". לסטטיסטיקה הבייסיאנית שימושים מרחיקי לכת. היא עומדת בבסיסן של מערכות הבינה המלאכותית למינהן, ומיושמת במגוון תחומים, החל בגנטיקה וכלה בסינון דואר זבל. אני מסתפק כאן בהפניה למאמר שפרסם פרופ' ישראל בנימיני ב-Ynet לפני מספר שנים, בו יש סקירה נאה של המשפט ושימושיו.

הכוכב הנעלם והאמד הכחול: משפט גאוס מרקוב ושיטת הריבועים הפחותים

שמחה גדולה אחזה בעולם האסטרונומיה בשנת 1781, עם גילויו של כוכב הלכת אוראנוס. לאחר שכוכב לכת זה נצפה, מסלולו חושב ומרחקו מהשמש הוערך, התברר כי מרחקו מהשמש מתאים לתחזית של "חוק טיטיוס-בודה", מעין להטוט חשבוני (שגוי, כך התברר בדיעבד) המתאר את מרחקו של כוכב לכת מהשמש כפונקציה של מספרו הסידורי. החוק תיאר בצורה טובה את מרחקיהם של כל כוכבי הלכת שהיו חדועים עד אז, אך השאיר "חור" בין מאדים לצדק. לפי החוק, "צריך" היה להיות שם עוד כוכב לכת, שלא נתגלה עדיין.

האסטרונומים הפנו את מאמציהם לגילוי כוכב הלכת האבוד. המאמץ נשא פרי כעבור 20 שנה. באחד בינואר 1801 גילה האסטרונום האיטלקי ג'וזפה פיאצי גוף שמימי שנע במסלול המיועד לכוכב הלכת האבוד. הוא כינה כוכב לכת חדש זה בשם צרס, לכבוד אלת החקלאות הרומית.

שמחתם של פיאצי ועמיתיו הייתה קצרה. לאחר שצפו בצרס במשך 41 לילות, "התקרב" מסלולו אל השמש, ובשל אורה החזק לא יכלו המשיך ולצפות בו. כמובן, כאשר יסיים צרס את הקפתו ויופיע מצידה השני של השמש יוכלו לצפות בו שוב, אבל, היכן בדיוק יופיע בשמי הלילה? הנתונים המועטים שנצברו (רק 22 תצפיות בפועל נאספו במשך 41 הלילות) לא אפשרו חישוב מדוייק של מסלולו.

מספר מלומדים ניסו לחזות את מסלולו של הכוכב הסורר. אחד מהם היה קרל פרידריך גאוס, מתמטיקאי ואסטרונום מהאוניברסיטה של גטינגן (אני מניח שכבר שמעתם עליו אי אלו פעמים). גאוס פרסם את תחזיתו למסלול של צרס בספטמבר 1801. צרס ציית לתחזיותיו של גאוס, והופיע בשמים בהתאם. עם גילוים של אסטרואידים נוספים שנעו במסלול בין מאדים לצדק, חזר גאוס על התרגיל וחישב את מסלולם של רבים מהם.

שרטוט המסלול של צרס על ידי גאוס

שרטוט המסלולים של האסטרואידים צרס ופאלאס על ידי גאוס (מקור: http://www.math.rutgers.edu/~cherlin/History/Papers1999/weiss.html)

מה היה הסוד של גאוס? רק ב-1809 פרסם גאוס ברבים את שיטתו, הידועה כיום כשיטת הריבועים הפחותים. ככל הנראה, גאוס נכנע ופרסם את השיטה רק לאחר שהמתמטיקאי הצרפתי לז'נדר פרסם בשנת 1806 את שיטתו לחישוב מסלולי שביטים, ולמעשה הוא שטבע את שם השיטה :"Méthode des Moindres Quarrés ". עם זאת, ידוע כי גאוס הכיר את השיטה כבר ב-1795, והוכיח ב-1798 כי אמד הריבועים הפחותים הוא אמד נראות מירבית – Maximum Likelihood Estimator (כמובן, המושגים האלה, שלקוחים מתחום התיאוריה הסטטיסטית,  עדיין לא היו ידועים בימיו). ב-1823 הוכיח גאוס כי השיטה אכן מספקת את האמד הלינארי הטוב ביותר במובן שזהו האמד הלינארי חסר ההטיה ששונותו מינימלית. מכאן הופיע הביטוי "אמד כחול" בכותרת הרשימה. כחול – BLUE- הם ראשי התיבות של Best Linear Unbiased Estimator. אין צורך להבהל מהמונחים הטכניים האלה, שלא אסביר בפירוט. אומר רק כי במלים פשוטות, גאוס הוכיח כי השיטה אופטימלית בשלושה מובנים שונים – גם נראות מירבית, גם שונות מינימלית וגם חסר הטיה.

גאוס ומרקוב

גאוס (משמאל) ומרקוב חולקים בתהילה של שיטת הריבועים הפחותים

המתמטיקאי הרוסי אנדריי אנדרייביץ מרקוב, שידוע בעיקר בזכות תרומתו לחקר התהליכים המקריים, תיאר בפירוט את שיטת הריבועים הפחותים בספר שפרסם ב-1912, וניסח אותה מחדש באופן ברור יותר, ובכך תרם את תרומתו להפצתה של השיטה ולפיתוחה. בזכות תרומתו זו זכה לחלוק בתהילה עם גאוס, והמשפט המוכיח את האופטימליות של שיטת הריבועים הפחותים נקרא משפש גאוס-מרקוב.

השיטה והכללותיה משמשות עד היום ככלי מרכזי לניתוח סטטיסטי של נתונים, ונמצאת בשימוש גם במדעים המדוייקים וגם במדעי החברה, בעיקר בתחום הכלכלה. סטיבן לויט, מחבר הספר רב המכר "פריקונומיקס", כתב בספרו כי השימוש בשיטה הוא "יותר אמנות מאשר מדע". אני חולק על דבריו. זוהי שיטה מדעית, המבוססת על תיאוריה מתמטית. יש לה יתרונות עצומים, כמובן, אך גם מגבלות. המשתמש בה חייב תמיד להיות מודע למגבלות האלה, ולא, מסקנותיו יהיו שגויות.

עד כאן ה"ציונות". אבל מהי בעצם שיטת הריבועים הפחותים? אנסה כעת לתת הסבר שווה לכל נפש.

נניח כי יש בידינו קבוצת נתונים, שנאספה ממדגם כלשהו. לכל פרט במדגם יש שני נתונים כמותיים. לדוגמא, אם אנו מסתכלים על מדגם של כפרים, נתון אחד יכול להיות מספר החסידות שקיננו בכפר באביב, והנתון השני יכול להיות מספר הלידות שהיו בכפר בקיץ שלאחר מכן. כלכלנים יעדיפו אולי להסתכל על מדגם של מדינות, כאשר נתון אחד הוא גובה המס שמטילה ממשלת המדינה על העסקים בתחומה, והנתון השני הוא הכנסות הממשלה ממסים באחוזים מהתמ"ג. חוקרים בחברת תרופות יסתכלו על מדגם של חולים, ויאספו נתונים על מינון התרופה הנסיונית שניתן לכל חולה ועל השינוי במצבו. בכל מקרה, אפשר לשרטט את הנתונים שהתקבלו על מערכת צירים, ומתקבלת דיאגרמת פיזור (scatterplot). בשרטוט אנו רואים מדגם בגודל עשרה כפרים. הנקודה המסומנת בחץ, לדוגמא, מייצגת כפר במדגם בו קיננו עשר חסידות ונולדו שני תינוקות (הנתונים לא אמיתיים, כמובן, אלא נדגמו ממוחי הקודח):

נניח שאנו רוצים לגלות האם קיים קשר קווי בין שני המשתנים. במלים אחרות, אנו שואלים את עצמנו האם ניתן לשרטט על מערכת הצירים קו שיתאר את הקשר בין המשתנים? כמובן שאי אפשר לשרטט קו ישר שיעבור דרך כל 10 הנקודות, אבל ישנם הרבה (אינסוף) קוים שעוברים דרך "ענן" הנקודות שלנו.  שרטטתי כמה מהם על פני מערכת הצירים. איזה מהם מתאר את הקשר בין שני המשתנים בצורה הטובה ביותר?

הנה הרעיון של גאוס. הוא בחר קו ישר אחד, ומדד את המרחק האנכי מכל נקודה אל הקו. סימנתי את המרחק האנכי מכל נקודה אל הקו על השרטוט שלנו. בכפר הראשון, בו קיננו 2 חסידות והיו 10 לידות, המרחק האנכי (כלומר אורך הקו האדום) הוא בערך 5. בכפר השני, בו קיננו 3 חסידות והיו 5 לידות, אורך הקו האדום הוא בערך 0.5, אבל כיוון שהנקודה נמצאת מתחת לקו, המרחק האנכי הוא 0.5-.

הקו האידיאלי הוא זה שעבורו כל המרחקים האנכיים שוים לאפס, אבל קו כזה לא קיים בדרך כלל. לכן אין ברירה אלא לחשב את הקו האופטימלי. אפשר, למשל, לחפש את הקו שעבורו סכום המרחקים בערכיהם המוחלטים הוא מינימלי. גאוס הבין כי עדיף לחפש את הקו שעבורו סכום ריבועי המרחקים הוא מינימלי (מכאן השם "ריבועים פחותים" – "Least Squares"). גאוס גם הראה כיצד ניתן למצוא את הקו האופטימלי. כל קו ישר ניתן לאפיון מלא על ידי שני פרמטרים – שיפועו ונקודת החיתוך שלו עם הציר האנכי. לכן ניתן לרשום את סכום ריבועי המרחקים האנכיים כפונקציה של שני הפרמטרים האלה, ולמצוא את נקודת המינימום של הפונקציה. ניתן לעשות זאת על ידי שימוש בחשבון דיפרנציאלי או תוך כדי שימוש בשיקולים גיאומטריים/אלגבריים. אפשר לחשב ולמצוא כי הקו האופטימלי לנתונים שבדוגמא הוא:

ניתן לפרש זאת בערך כך: גם ללא חסידות יהיו בממוצע 6.8 לידות, וכל חמש (בערך) חסידות נוספות יביאו ללידת תינוק נוסף. אינטרפרטציה מפתה נוספת היא אינטרפרטצית הניבוי: מה יקרה בכפר בו יקננו 20 חסידות? אם נציב 20 בנוסחא, קו הריבועים הפחותים ינבא כי יהיו בכפר זה 10.6 לידות.

אבל, אבוי, קו הריבועים הפחותים אינו מאפשר ניבוי אמיתי. הפרמטרים הנאמדים (שהם כזכור שיפוע הקו ונקודת החיתוך שלו עם הציר האנכי) תלויים ישירות במקדם המתאם בין שני המשתנים. קו הריבועים הפחותים מתאר קשר אפשרי בין המשתנים, אבל לא סיבה ותוצאה. גם אם היינו מחליפים את תפקידי המשתנים, כמספר הלידות הוא המשתנה ה"מסביר" את מספר החסידות (כמשתנה ה"מוסבר"), מקדם המתאם בין שני המשתנים לא היה משתנה, וההסבר לפיו מספר החסידות מנבא את מספר הלידות הגיוני בדיוק כמו ההסבר לפיו מספר הלידות מנבא את מספר החסידות.

זאת ועוד: קו הריבועים הפחותים מתאר רק את מה שקורה בתחום הערכים בו צפינו. הוא לא יכול לומר לנו שום דבר על מהות הקשר בין המשתנים מחוץ לטווח הזה. במלים אחרות: קו הריבועים הפחותים הוא מודל תיאורי של הנתונים, וככזה הוא מוגבל להסברה של הנתונים המתוארים ותו לא. המציאות עשויה להיות שונה. באיור הבא מובאות ארבע דיאגרמות פיזור שמצאתי באינטרנט, עם קוי הריבועים הפחותים שהיו עשויים להתקבל לו הייינו מסתכלים רק על טווח חלקי של הנתונים:

קו הריבועים הפחותים מול המציאות

קו הריבועים הפחותים מול המציאות - ארבע דוגמאות

גאוס הצליח בניבוי המסלול של צרס בעזרת קו הריבועים הפחותים כיוון שהסתבך על מודל מוצק, לפיו צרס (כמו שאר כוכבי הלכת) מקיף את השמש במסלול אליפטי. לאחר שיש מודל, הכלים הסטטיסטיים יכולים לאפשר את אמידת הפרמטרים שלו. ההיפך לא בהכרח נכון. ניתן להשתמש בכלים הסטטיסטיים כדי לתאר את הנתונים, אך אין די בכך כדי לבנות ולאשר מודל. לצערנו, ישנם אנשים שבכל זאת בונים מודל סביב הנתונים הסטטיסטיים שלהם, מבלי להתחשב במגבלות של כלי הרגרסיה.