חיפוש באתר

קישורים

עמודים

קטגוריות

ארכיב עבור 'בריאות'

רחובות הסרטן והאנטנות הסלולריות

ב-25.2.2019 התפרסמה בעיתון ידיעות אחרונות כתבה תחת הכותרת “רחובות הסרטן“. הנה ציטוט כותרות המשנה:

מקום לדאגה: ברדיוס של 500 מטרים במרכז ראש־העין התגלו בשנים האחרונות עשרות מקרים של סרטן • כארבעים בני אדם כבר נפטרו מהמחלה • התושבים בטוחים שהגורם לתחלואה הוא אנטנות סלולריות שניצבות על גג בניין השייך לעירייה • “שנים שאנחנו זועקים ואף אחד לא מקשיב”, הם טוענים, “אנשים מתים פה אחד אחרי השני”.

הכתבה הזו ללא ספק מעודדת פניקה. עוד באותו יום הופיע פוסט בפייסבוק בקבוצה של תושבי העיר שלי, המזהיר מפני שתי אנטנות סלולריות שניצבות על גג התחנה המרכזית בעיר. “אנשים ימותו!” נכתב בפוסט שזכה לעשרות לייקים ותגובות נסערות.

אני לא מזלזל בכאבם של תושבי ראש העין, להפך. אני גם לא מתכוון לדון במספרים שהוזכרו בכתבה. אני מקבל אותם כפי שהם. אני רק רוצה להתייחס רק לטענה כי הגורם לתחלואה הוא אנטנות סלולריות. קל (לי לפחות) להסביר למה הטענה הזו לכל הפחות מוטלת בספק: יש עוד הרבה אנטנות סלולריות בהרבה מקומות, וסביבן אין שיעורי תחלואה גבוהים בסרטן. אם האנטנות מסרטנות, אז הן צריכות לסרטן בכל מקום, לא רק בראש העין.

אז למה דווקא בראש העין יש מקבץ[1] כל כך גדול של תחלואה בסרטן? תשובה אפשרית אחת היא שיש שם גורם סביבתי בעייתי אחר שאינו קיים במקומות אחרים. תשובה אפשרית אחרת היא שייתכן שיש גורם אחר לא סביבתי שאינו קיים במקומות אחרים, אולי גורם גנטי. אפשרות שלישית ועצובה במיוחד היא שהתושבים במקום סובלים מביש מזל.

והנה העניין: אם אין גורמים מקומיים (סביבתיים או אחרים) שגורמים לסרטן (או למחלה אחרת), והתחלואה מתפזרת באופן מקרי על פני כל הארץ, אז נוצרים מקבצים. חוקי הסטטיסטיקה עשויים להיות אכזריים.

אסביר בקצרה: אם פיזור מקרי התחלואה על פני הארץ הוא אקראי, ומחלקים את הארץ ליחידות שטח שוות בגודלן, אז התפלגות מספר המקרים ביחידת שטח מסויימת היא התפלגות פואסונית. ואז יש הסתברות, אמנם קטנה, שבאחת מהיחידות האלה יהיה מקבץ גדול של מקרי תחלואה. הבעיה היא שאין אפשרות לדעת מראש איפה זה יקרה.

גם ההפך נכון: אם התפלגות מספר המקרים ביחידת שטח מסויימת היא התפלגות פואסונית, אז ניתן להסיק כי הפיזור על פני השטח הוא אקראי.

הפעם אדגים את התופעה בעזרת סימולציה. (להלן קישור לתכנית R שבעזרתה ביצעתי את הסימולציה)

נניח כי קיימת מדינה שצורתה ריבוע מושלם, בגודל 100×100 קילומטר. פיזרתי באופן אקראי 400 מקרי תחלואה על פני הארץ בכל פעם הגרלתי שני מספרים מקריים בין אפס ל-100 שקבעו את הקואורדינטות של המקרה. הנה המפה שקיבלתי. יש בה ארבע מאות נקודות.

חילקתי את המפה ל-100 ריבועים, כל אחד בגודל 10×10 קילומטר.

ספרתי כמה נקודות/מקרים יש בכל אחד ממאה הריבועים. הנה טבלה עם תוצאות הספירה:

מספר המקרים 0 1 2 3 4 5 6 7 8 9
מספר האיזורים 1 5 19 19 18 16 13 3 5 1

 

מסתבר שיש איזור אומלל אחד שבו התגלו 9 מקרי תחלואה, 5 איזורים עם 8 מקרי תחלואה, ו-3 עם 7 מקרי תחלואה. לעומת זאת יש איזור אחד בר מזל שבו כולם בריאים, ועוד 5 איזורים שבהם היה רק מקרה אחד. סימנתי את האיזורים האלה במפה. האיזורים שבהם התחלואה נמוכה מוקפים במסגרת סגולה (קצת קשה לראות):

אני לא רואה שום תבנית בפיזור של איזורי התחלואה הגבוהה על המפה, וגם לא בפיזור של איזורי התחלואה הנמוכה[2] . זה לא אומר שלא צריך לבדוק מה קורה שם. אבל הבדיקה צריכה להיות רצינית ולא להסתמך על פניקה שמפיצה כתבה בעיתון.

ראו גם רשימות נוספות שכתבתי על ההתפלגות הפואסונית ושימושיה:


הערות
  1. cluster []
  2. ניתן גם לבדוק את טיב ההתאמה של מודל ההתפלגות הפואסונית לנתונים []

חיסוני חצבת ואלימות נגד נשים

בשבוע שעבר תלו הורים באחד מגני הילדים (בגבעתיים נדמה לי) שלטים על שער הגן בו הזהירו כי בגן יש ילדה לא מחוסנת והתריעו על סכנת הדבקות בחצבת. אפשר להתווכח על השלט, תוכנו, וגם על הסגנון. בדיון בפייסבוק נטען כי זו “פעולה אלימה מאוד”. לעומת זאת נטען באותו דיון גם כי ” זו התנהגות סבירה לחלוטין… בירושלים בה יש התפרצות חצבת כרגע, יש שלטים בכניסה לקופות החולים שמזהירים הורים שילדיהם חשודים בהידבקות בחצבת מפני כניסה למרפאה ומבקשים להישאר בחוץ ולקרוא לאיש צוות שייצא אליהם, ובצדק גמור”. אני באופן אישי חושב שצריך להזהיר את הציבור ובפרט הורים לילדים בגן על המצאות ילדה שלא חוסנה ביודעין, בייחוד כשבארץ יש כעת התפרצות חמורה של מחלת החצבת, ונכון למועד כתיבת שורות אלה למעלה מ-2000 איש אובחנו כחולים, ורבים עוד יותר נחשפו למחלה בבתי ספר, קופות חולים ובתי חולים, בתחבורה הציבורית ובמקומות נוספים.

בכל מקרה, אני לא חושב שהצבת שלטי אזהרה מפני ילדה לא מחוסנת שקולה לליל הבדולח (או למעשים אחרים שנעשו בגרמניה הנאצית), אבל אבישי מתיה חושב שכן ומזהיר כי “זה ייגמר בדם”:

אבל בוא נעזוב את אבישי מתיה ונדון בסטטיסטיקה.

בואו נראה קודם מה יכול לקרות בגן. לכאורה אין בעיה. הילדה לא מחוסנת, ולכן הדבר הגרוע ביותר שיכול לקרות הוא שהיא תידבק בחצבת, וזו עיקר הבעיה שלה. היא עלולה להדביק אנשים אחרים שלא מחוסנים, ובגן כל הילדים האחרים מחוסנים, אז הם לא יידבקו.

זהו, שלא.

בואו נניח כי בגן הספציפי הזה יש 30 ילדים, ואף אחד מהם אינו במצב בריאותי שלא איפשר לו לקבל חיסון. כולם קיבלו חיסון. האם כולם מחוסנים? לא בהכרח. היעילות של החיסון, לאחר קבלת מנה אחת של חיסון, היא בערך 95%. אחרי קבלת המנה השנייה היעילות עולה ל-99%, אבל המנה השנייה ניתנת רק בכיתה א, והילדים האלה עדיין בגן. הסיכוי שילד אחד שקיבל חיסון אכן מחוסן הוא לכן 0.95. הסיכוי ששני ילדים אחד שקיבל חיסון הינם אכן מחוסנים הוא 0.95 כפול 0.95. הסיכוי כי כל 30 הילדים בגן שקיבלו חיסון אכן מחוסנים הוא 0.95 מוכפל בעצמו 30 פעמים, וזה יוצא 0.215. מכאן שהסיכוי כי בגן הזה יש לפחות ילד אחד שאינו מחוסן למרות שקיבל חיסון הוא כמעט 80%. הסיכוי שבקרב כל האנשים שנמצאים בסביבתה של הילדה הלא מחוסנת יש לפחות אדם אחד לא מחוסן הוא הרבה יותר גבוה. אם הילדה הזאת תחלה, כמעט בטוח שהיא תדביק אדם נוסף אחד לפחות. ככה המגיפות מתפשטות.

חצבת היא אחת המחלות המדבקות ביותר שיש, ויש אומרים כי זו המחלה המידבקת ביותר. באוכלוסייה שאיננה מחוסנת, אדם חולה ידביק בממוצע 18 אנשים נוספים. הסיכוי כי אדם לא מחוסן שנחשף לחצבת יחלה במחלה עולה על 90%. חשיפה למחלה כוללת המצאות במקום שבו היה אדם חולה חצבת אפילו שעתיים לאחר שהחולה עזב את המקום. לדעתי האישית, זה השיקול היחיד שצריך לקבוע. כמו שאף אדם מוסרי לא ידחוף דחיפה קטנה מישהו שעומד על הרציף ויש סיכון, קטן אך חיובי, שהנדחף ייפול אל מתחת לגלגלי הרכבת, אני חושב שאף אדם מוסרי לא צריך לאפשר אפילו סיכון קטן של הדבקת אדם אחר בחצבת. המעשה המוסרי הוא לצמצם את הסיכון. לכן, לא לחסן ילדים מתוך אידאולוגיה זה מעשה לא מוסרי, כי זה מסכן גם את הילד שלא מחסנים וגם אחרים, וחיסון מקטין מאוד את הסיכון הזה. להזהיר אנשים מפני סיכון של הדבקות בחצבת, גם אם הסיכון קטן, זה לדעתי המעשה הנכון והמוסרי.[1]

בשלב זה נטען כי ההסתברות שציינתי (מעל 90%) היא הסתברות מותנה, וזה נכון. זו אכן ההסתברות המותנה להדבקות בהינתן חשיפה לאדם חולה. ניתן כנגדי כי ההסתברות הרלוונטית היא “הסיכוי במצב נתון, בחיים נורמליים ורגילים בחברה הישראלית, להידבק”. אני לא אחזור כאן על כל הטיעונים שנטענו[2] ,אבל השורה התחתונה של הטיעון היא כי הסיכון להדבקות בחצבת הוא הוא “נמוך. מאד. קטנטנן.”

אולם אני חושב בכל זאת שההסתברות הרלוונטית היא ההסתברות המותנה. כאן עשיתי אנלוגיה לרצח נשים. אני רוצה להבהיר כי אין בכוונתי לרמוז כי הנושא הזה אינו מטריד את האדם שהתדיין מולי, ובוודאי שאיני שם מילים בפיו. אני כן טוען כי ההסתברות הלא מותנה אינה רלוונטית כאשר דנים בסיכונים מהסוג שלי.

הטיעון שלי הוא כזה: השנה נרצחו יותר מ-20 נשים. הבה נעגל את המספר ל-30. בישראל יש קרוב ל-9 מיליון תושבים, כמחציתם, כלומר כ-4.5 מיליון הן נשים. הבה נעגל את המספר הזה ל-4 מיליון. כעת נבצע פעולת חילוק, ונקבל כי הסיכוי של אישה להירצח, עם עוד עיגול נדיב כלפי מעלה, הוא כ-1 ל-130 אלף. סיכוי הרבה יותר קטן מהסיכוי להידבק בחצבת[3]. אז לא צריך לעשות כלום בנושא???

אחת המשתתפות בדיון לקחה את הטיעון הזה עוד יותר רחוק ואמרה כי “הסתברות להיפגע בפיגוע טרור היא נמוכה מאוד מאוד…השנה נרצחו בפיגועי טרור 15 איש… אז אולי בכלל אין צורך לנקוט בפעולות כאלה חריפות למלחמה בטרור, ממילא מההסתברות לפגיעה היא נורא נמוכה”.

אני חושב שהנקודה ברורה. בסיכונים צריך לדון בהקשר של גורמי סיכון, וההסתברות הרלוונטית היא לכן ההסתברות המותנה בגורמי הסיכון. כדי לנהל את הסיכונים צריך לטפל בגורמי הסיכון. במקרה של מגיפת החצבת, גורם הסיכון היחיד שניתן לטפל בו כרגע אופן ההתפשטות המהיר של המחלה. הדרך היחידה האפשרית להאט את קצב התפשטות המחלה היא לחסן את האוכלוסייה.

ויש עוד נקודה שצריך לשים לב אליה. אף אחד לא מטיף לרצח נשים, אבל יש עשרות אלפי אנשים שמקדמים אג’נדה אנטי חיסונית, והתנועה הזו צוברת תאוצה ועלולה להגיע למסה קריטית מסוכנת (והסיכוי שזה יקרה הוא לדעתי מאוד לא זניח). לצערי, לא קיימות כרגע סנקציות שאפשר לנקוט נגד אנשים שאינם מחסנים את ילדיהם ואנשים המעודדים אנשים אחרים לא לחסן. מה שניתן לעשות זה להזהיר מפני הסכנות, גם אם זה פוגע ברגשותיו של אבישי מתיה.


הערות
  1. הערה: בפיסקה זו יש בעיקר דיון מוסרי, והדברים שכתבתי בפיסקה זו היו בדיון המקורי תשובה לשאלה סטטיסטית על סיכויי ההדבקות המחלה. ניתן לטעון נגד ההיסחפות שלי לדיון מוסרי, אולם אני חושב שאי אפשר לדון בשאלה הסטטיסטית בלי להידרש למשמעות המוסרית שלה. []
  2. תוכלו לקרוא זאת בדיון בפייסבוק []
  3. שהוא כ-1 ל-4500, על פי הנתון הנוכחי של כ-2000 חולים באוכלוסייה של כ-9 מיליון איש []

ממוגרפיה – סיכונים ונתונים

באחת מקבוצות הפייסבוק שאני חבר בהן הופיע ביום שני האחרון (17.9.2018) צילום המסך של הודעה שבה נאמר: “מידע סופר חשוב שעשוי להציל את חייך…הסכנות בבדיקת הממוגרפיה”. הפוסט הנ”ל כלל גם קישור לכתבה באתר שעוסק בבריאות הוליסטית או משהו כזה – מייד אמסור פרטים נוספים על הכתבה הזאת.

הגברת ששיתפה את צילום המסך כתבה: “ממוגרפיה – בחירה מושכלת… פשוט אין לתאר”.

התגובות לא איחרו לבוא. הנה כמה ציטוטים:

  • לפחות הפעם זה לא יפגע בילדים של הנשים
  • מי שעומדת ברף קוגניטיבי מינימלי (כלומר – בלא מוגבלות שכלית או נפשית), ומחליטה לא לעבור ממוגרפיה בגלל הקשקוש הזה – וואלה זכותה. האהבלה תצטרך לשאת בתוצאות של החלטותיה כמו אדם מבוגר.
  • אבל זה מהאתר הסופר אמין Healthy-Holistic-Living. אפילו יש לו את המילה Health בשם!
  • הכתבה באנגלית? זהו, כבר שוכנעתי.
  • אה, יופי. עכשיו הם גם בעד סרטן השד?

התגובה שלי הייתה מעט שונה:

לא קראתי את כל התגובות, אבל התגובה שלי תהיה ככל הנראה לא פופולרית: לממוגרפיה יש שיעור false positive גבוה, בייחוד בגילאים צעירים. זה מוביל לנזקים של טיפולים רפואיים מיותרים, כולל כריתות וכימותרפיות מיותרות, שלא לדבר על הנזק הנפשי. לכן ההמלצה של גופי הרפואה בארה”ב (לא זוכר בדיוק איזה) היא לערוך ממוגרפיה רק החל מגיל 50, וגם אז רק אחת לשנתיים.

הדיעות נחלקו.  אשה שלא ברור לי מה גילה, אחות במקצועה, כתבה: “אחרי שלאמא שלי היה סרטן השד אני אשאר עם מעקב פעם בשנה”. הערתי כי זה מה שקורה בקבוצה המושכלת: הרגשות גוברים על הנתונים. תשובתה: “הנתונים הם עדיין שגילוי מוקדם מציל חיים. באמת, שנגיד לכל אותן בנות 30-40 שגילו אצלם סרטן שיחכו לגיל 50?”

בשלב זה הצעתי הפניה למקורות. המלצתי על ספרו של הפסיכולוג והסטטיסטיקאי הגרמני גרד גיגרנצר, Calculated Risks, שעוסק באופן שבו אנשים מעריכים סיכונים, ונושא בדיקות הממוגרפיה לגילוי מוקדם של סרטן השד נידון בו בהרחבה, יחד עם דוגמאות נוספות[1]. בספר יש הפניות למחקרים רבים בנושאים האלה. המלצתי גם על ספרו של דויד שפיגלהאלטר, The Norm Chronicles,  שפונה יותר לקהל הרחב. אני אדלג על המשך הדיון שהיה בהחלט מרתק.

מה פיספסנו פה?

אני מסכים שאתר ששמו www.healthy-holistic-living.com מעורר תגובה אנטגוניסטית. גם אצלי. אבל שלושה ימים לאחר ההודעה הראשונה בפייסבוק, פתחתי את הלינק וקראתי את הכתבה. אני חושש שאף אחד לא טרח מלבדי לפתוח את הלינק ולקרוא את הכתבה שהציתה את כל הדיון. שאלתי בפירוש מי פתח את הלינק וקרא את הכתבה. אף לא אדם אחד[2] הצהיר כי הוא קרא את הכתבה, וזאת אחרי שכתבתי בפירוש כי לדעתי יש ממש בדברים.  במבט ראשון, מה שראיתי לא מבשר טובות. היו שם כל מיני טענות עם לינקים שהובילו לדפים אחרים באתר הזה. היו שם סימונים של מראי מקום למחקרים שצוטטו (כמו: (1) למשל), אבל הם לא הכילו קישורים. בקיצור: הפניות למחקרים לא היו שם. זה נשמע לי הגיוני. ייתכן מאוד שלא בכל כתבה באתר הזה מסתמכים על מחקרים חיצוניים, ואם יש כתבה ללא הפניות כאלה היא תעורר חשד אם בכתבות אחרות יש הפניות.

מצד שני, על סמך הידע המוקדם שלי, טענתי בקבוצה כי אכן יש ממש בטענות שהועלו, לממוגרפיה יש שיעור גבוה של תוצאות חיוביות שגויות, וייתכן מאוד כי הסיכונים בבדיקה עולים על התועלת שלה. לכן המשכתי לקרוא בעיון.

אפשר לזהות אם יש מקורות או אין. מה שצריך לעשות זה לערוך חיפוש בגוגל על משפטי מפתח מהכתבה. אם הם ציטטו מחקרים, סביר להניח שהציטוט הועתק כלשונו מהמאמר בו פורסם המחקר.

החיפוש הראשון היה אחרי המחקר קנדי שהוזכר שם. איזה מחקר קנדי? חיפוש בגוגל אחרי הביטוי Canadian study breast cancer הוביל אל כתב העת British Medical Journal, אחד מארבעת כתבי העת המובילים בעולם בתחום הרפואה. המחקר שכותרתו ” Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomised screening trial” עקב במשך 25 שנה אחרי כ-89000 נשים בגילאי 40 עד 59 (בתחילת המעקב), שחלקן עברו ממוגרפיה וחלקן לא[3] . המסקנה:

“Annual mammography in women aged 40-59 does not reduce mortality from breast cancer beyond that of physical examination or usual care when adjuvant therapy for breast cancer is freely available”

יחס הסיכון (Hazard Ratio) הוא 0.99, עם רווח סמך של 0.88-1.12. יחס סיכון קטן מ-1 פירושו כי בפועל נצפו יותר מקרי מוות מסרטן השד אצל נשים שעברו ממוגרפיה, אבל זה רעש סטטיסטי.  ובמילים פשוטות בעברית: אם יש טיפול זמין לסרטן השד, ונעשות בדיקות פיזיות רגילות לגילוי גושים חשודים בשד, לממוגרפיה אין ערך מוסף להורדת התמותה מסרטן השד. בצורה יותר בוטה: לפי המחקר הזה, הממוגרפיות לא מצילות חיים.

משפט מפתח שני אותו חיפשתי הוא:

“If we assume that screening reduces breast cancer mortality by 15% after 13 years of follow-up and that overdiagnosis and overtreatment is at 30%, it means that for every 2000 women invited for screening throughout 10 years, one will avoid dying of breast cancer and 10 healthy women, who would not have been diagnosed if there had not been screening, will be treated unnecessarily. Furthermore, more than 200 women will experience important psychological distress including anxiety and uncertainty for years because of false positive findings.”

מה המשפט הזה אומר? אפילו אם מניחים כי ממוגרפיה שנעשית אחת לשנה במשך 13 שנה מקטינה את התמותה מסרטן השד ב-15%[4], ואף מניחים כי אבחון היתר וטיפול היתר[5] הם ברמה של 30%[6], אזי אם 2000 נשים יעברו ממוגרפיה שנתית במשך 10 שנים, יינצלו חייה של אישה אחת. המחיר? 10 נשים יקבלו טיפול בלתי נחוץ לסרטן השד – כי הן לא חולות בסרטן השד – הן אבחנות חיוביות שליליות. איזה טיפולים? לא נאמר, אבל אפשר להעלות ספקולציות: ביופסיה, כריתה, כימותרפיה, הקרנות.

וזה לא הכל: עוד 200 נשים יחוו לחץ פסיכולוגי משמעותי כולל חרדה וחוסר וודאות במשך שנים רבות, וזאת בשל אבחנה חיובית שלילית. מדובר על נשים שקיבלו אבחנה חיובית שלילית, אך בבדיקה נוספת התבררה הטעות. למי שטוען כי לכאורה הכל בסדר אם הטעות התגלתה – המחקר הזה אומר: לא. לטעות יש נזק גם אם נמנע טיפול מיותר לסרטן.

מאיפה בא הציטוט הזה? לא מאתר פרסום ל-“טיפולים הוליסטיים וטבעיים”. אלא מסקירה שיטתית של מחקרים שבוצעה במכון קוקריין שפורסמה ב-2013: Screening for breast cancer with mammography.

החיפוש אחר הציטוט האחרון הוביל אותי גם למאמר שהתפרסם בכתב העת New England Journal of Medicine, בשנת 2015, שכותרתו: “Benefits and harms of mammography screening“. כבר מהכותרת אתם יכולים ללמוד שיש גם harm: בבדיקות הממוגרפיה יש לא רק תועלת, אלא גם נזק. המאמר סוקר מחקרים שנעשו להערכת שיעור הטעויות החיוביות שליליות של ממוגרפיות, שיעור הטיפולים המיותרים שנערכים עקב טעויות חיוביות שגויות[7], וגם של שיעור הטעויות השליליות השגויות (כלומר: לא אובחן סרטן, למרות שיש). המסקנה של החוקרים חד משמעית: הנזק של בדיקות הממוגרפיה גדול בהרבה מהתועלת. אם אלף נשים מתחילות לעבור ממוגרפיה דו שנתית החל בגיל 50, ימנעו שני מקרי מוות כתוצאה מסרטן השד. המחיר: ל-200 נשים מתוך 1000 יהיה אבחון חיובי שגוי. 30 נשים יעברו ביופסיה ללא צורך. 15 נשים יקבלו טיפול מיותר לסרטן שהן לא חולות בו. החוקרים לא דנים בנזקים הפסיכולוגיים האפשריים שייגרמו ל-185 נשים שקיבלו אבחנה חיובית שגויה אך איכשהו ניצלו מטיפול מיותר ומזיק.

לעשות ממוגרפיה או לא לעשות?

למרות כל מה שנכתב כאן, אין תשובות חד משמעיות. יש גם מחקרים שטוענים כי התועלת בממוגרפיה עולה על הנזק. אין מחלוקת בקרב הקהילה הרפואית כי ממוגרפיה טומנת בחובה גם נזקים. גם אין מחלוקת כי ממוגרפיה שנעשית מתחת לגיל 50 אינה יעילה אצל נשים שלא נמצאות בקבוצות סיכון ספציפיות. בהחלט יש מחלוקת בדבר היעילות של הממוגרפיות לאחר גיל 50. ההמלצה של רשויות הבריאות כיום היא לבצע ממוגרפיה דו שנתית החל מגיל 50. עם זאת, ישנם ארגונים ועמותות הממליצים על בדיקות ממוגרפיה בגילאים צעירים יותר ובתדירות גבוהה יותר[8].

הדבר הנכון שכל אשה צריכה לעשות זה להחליט בעצמה מה לעשות, רצוי מאוד בהתייעצות עם רופאה (או רופא), ותוך כדי בחינה של הנתונים, והערכת התועלת האישית שלה מול הנזק האישי שלה. על הרופאות, לעומת זאת, מוטלת חובה לתקשר את מאזן התועלת והנזק, כפי שתואר במאמר של הניו-אינגלנד שסקרתי זה עתה. האם הרופאות מודעות למחקר הזה ולמחקרים דומים, ויודעות לתקשר את הסיכונים? אני לא בטוח. באתר של עמותת “אחת מתשע” לא מצאתי אזהרות או אזכורים של הסיכונים האפשריים של בדיקות הממוגרפיה.

מה אפשר ללמוד מכל זה?

הנטייה לפסול אמירות שמקורן בקבוצות ופורומים של מתנגדי חיסונים, רפואה הוליסטית וכיוצא בזה היא מסוכנת. מי שמצוי בסוגיית החיסונים, וניזון ממקורות מידע אמינים, למשל מהאתר של עמותת מדעת, יכול לדחות טענות של התנגדות לחיסונים על הסף. אבל זה לא אומר שכל דבר צריך להיפסל על הסף, אפילו אם הוא נכתב על ידי מתנגד סיכונים.

גם הזלזול בכתבות מאתרים כמו healthy-holistic-living נקודה קום עלול להתגלות כבעייתי. נכון שבהרבה מאוד מקרים נכתבות שם שטויות, ואף נכתבים דברים מסוכנים: הומיאופתיה, התנגדות לחיסונים, ועוד. עם זאת, יש לנקוט גישה ספקנית וביקורתית: לקרוא בצורה ביקורתית, לברר האם יש אסמכתאות לטענות, ואז להעריך את מידת האמון שיש לתת בדברים. נכון, זה קשה, ולא לכל אחד יש את הרצון והיכולת. הבעיה היא שלפעמים אנשים שאין להם רצון או יכולת מסתמכים על הרגש כמו שקרה בתגובות לפוסט הזה. ואנשים שמסתמכים על הרגש ולא על הנתונים יש לנו מספיק בקבוצות כמו “חיסונים בחירה מושכלת”.

הבהרה

למרות שבפוסט זה תמכתי בהודעה שהופיעה בקבוצת “חיסונים בחירה מושכלת”, אין להסיק מכך שאני מתנגד לחיסונים מכל סוג שהוא. אדרבא.


הערות
  1. למשל, בדיקות לגילוי מוקדם של סרטן הערמונית []
  2. נכון למועד כתיבת שורות אלה []
  3. קרן לנדסמן סקרה את המחקר הזה בבלוג שלה: http://bit.ly/2xyFEFM. אומר בנימוס כי אני לא מסכים עם הניתוח שלה []
  4. וספק אם זה אכן כך []
  5. הנובעים מטעויות חיוביות שליליות []
  6. ושוב, יש ספק גם לגבי הנתון הזה []
  7. הפתעה: השיעורים האלה גבוהים במיוחד בארצות הברית []
  8. לא ברור לי על סמך מה []

איך לגרום לילדים לאכול יותר ירקות

נתחיל מהסוף: אני לא יודע איך לגרום לילדים לאכול ירקות. לפחות עם הילדים שלי, ההצלחה היא מועטה. אבל לשני חוקרים מאוניברסיטת קולורדו היה רעיון: נגיש להם את הירקות בצלחות עם ציורים של ירקות. כדי לבדוק האם הרעיון עובד הם ערכו ניסוי שתוצאותיו פורסמו בכתב העת היוקרתי JAMA Pediatrics. מכיוון שהתוצאות פורסמו אתם יכולים לנחש כי התוצאה של הניסוי הייתה חיובית. אבל, האם הם באמת הוכיחו כי הרעיון שלהם עובד? לדעתי לא, וזו תוצאה ישירה של התכנון הלקוי של הניסוי.

תכנון הניסוי ותוצאותיו

נבחרו 18 כיתות גן ובית ספר (ילדים בגיל 3-8) באחד מפרוורי דנוור. בתחילה הוצעו לילדים פירות וירקות כאשר סופקו להם צלחות לבנות. בכל כיתה הונחו קערת פירות וקערת ירקות, וכל ילד לקח לעצמו פירות וירקות, ואכל מהם כרצונו. המשקלים של הירקות והפירות נרשמו לפני שהוגשו לילדים, ולאר שהילדים סיימו את ארוחתם החוקרים שקלו את הפירות והירקות שנותרו. ההפרש בין המשקלים (לפני הארוחה ואחריה) חולק במספר הילדים, וכך התקבלה הכמות הממוצעת של פירות וירקות שכל ילד אכל. נעשו גם חישובים לפירות לחוד ולירקות לחוד. החוקרים חזרו על המדידות האלה שלוש פעמים בכל כיתה.

לאחר זמן מה חזרו על המדידות באותו אופן, כאשר הפעם סופקו לילדים צלחות שעליהן ציורים של ירקות ופירות. התוצאה: חלה עליה ממוצעת של 13.82 גרם בצריכת הירקות, ותוצאה זו מובהקת סטטיסטית. באחוזים, כמו ביידיש, זה נשמע הרבה יותר טוב: זו עליה של כמעט 47%.

אז מה הבעיה? יש מספר בעיות.

בעיה ראשונה – דיוק יתר

אתחיל במה שהוא לכאורה לא בעיה, אבל מהווה אות אזהרה: דיוק יתר. כאשר מתפרסמות תוצאות מדוייקות במיוחד, צריך להתחיל לדאוג. בעברית יש בעיה עם הבעיה הזו: יש רק מילה אחת לתיאור דיוק. באנגלית יש שתיים: precision ו-accuracy. הבדל הוא מהותי. precision מתייחס לרמת הדיוק המדווחת של המדידות. accuracy מתייחס למרחק בין הערך הנמדד והערך האמיתי, הבלתי נצפה, ונמדד בדרך כלל על ידי סטיית תקן או רווח סמך.  התוצאות מדווחות ברמה של שתי ספרות אחרי הנקודה: הן מאוד  precise. אני לא אומר שזה לא חשוב, אבל מהניסיון שלי, כשמגזימים צריך לבדוק בצורה יותר יסודית מה קורה. דיוק של שתי ספרות אחרי הנקודה העשרונית כשמדובר בגרמים נראה לי מוגזם. אתם כמובן יכולים לחשוב אחרת, אבל זה אות האזהרה שגרם לי לקרוא את המאמר עד סופו ולחשוב על מה שתואר בו .

בעיה שניה – על מי הניסוי נערך?

הבעיה השנייה היא הרבה יותר מהותית: הבחירה של יחידת הניסוי, מה שמכונה ה-experimental unit או unit of observation. יחידות הניסוי כאן הן הכיתות. התצפיות נעשו ברמת הכיתה. החוקרים מדדו כמה ירקות ופירות נאכלו ברמת הכיתה, לא ברמת הילד. הם אמנם חישבו ממוצע לילד, אבל אני מניח שכולם יודעים שהממוצע לבדו הוא מדד בעייתי: הוא מתעלם מהשונות בין הילדים. לפני ההתערבות הניסויית, כל ילד אכל בממוצע כ-30 גרם ירקות בארוחה, אבל אני לא חושב שיהיה מי שיחלוק על האמירה כי כל ילד אכל כמות שונה של ירקות. מהי סטיית התקן? אנחנו לא יודעים, והחוקרים לא יודעים, וזה מהותי, כי השונות שבין הילדים משפיעה על המסקנה הסופית. מכיוון שהחוקרים התעלמו (ולא משנה מה הסיבה) מהשונות בין הילדים, הם הניחו למעשה כי השונות היא נמוכה מאוד, למעשה אפס. אם השונות הזו הייתה נלקחת בחשבון המסקנות של הניסוי היו אחרות: רווחי הסמך בוודאי היו שונים, ויותר רחבים מרווחי הסמך שחישבו החוקרים.

עוד סוג של שונות שלא נלקח בחשבון היא השונות בתוך ילדים. אסביר: גם אם צפינו בילד אחד וראינו כי בממוצע הוא אוכל 30 גרם ירקות בכל ארוחה, בארוחות שונות הוא אוכל כמות שונה של ירקות. ושוב נשאלת השאלה: מה סטיית התקן? גם לסטיית תקן זו יש השפעה על המסקנה הסופית של הניסוי. כמובן, לכל ילד יש סטיית תקן שונה, וגם את השונות הזאת צריך לקחת בחשבון.

סוג שלישי של שונות שלא נלקח בחשבון הוא השונות שבין ילדים בגילאים שונים: סביר להניח שילד בן 8 יגיב בצורה שונה לצלחת מצויירת מאשר ילד בן 3. בוודאי ילד בן 8 יאכל יותר ירקות מאשר ילד בן 3. החוקרים התעלמו גם מהשונות הזו.

אני סבור כי החוקרים לא נתנו דעתם על כל השונויות האלה. המילים variation, adjust או covariate לא מופיעות במאמר. מכיוון שהחוקרים התעלמו מהשונויות רווחי הסמך שלהם צרים מדי ולא משקפים את ההבדלים האמיתיים בין הילדים ובין סוגי הצלחות.

ולבסוף, למרות שהיחידה הניסויית הייתה הכיתה, התוצאות דווחו כאילו המדידות נעשו ברמת הילד. זו לדעתי עדות נוספת לכך שהחוקקים לא היו מודעים לשונויות שבין ובתוך הילדים. לדידם, כיתה וילד הם היינו הך.

בעיה שלישית – מה עם הביקורת?

בניסוי הזה אין קבוצת ביקורת. לכאורה אין בעיה: על פי תכנון הניסוי, כל כיתה מהווה את קבוצת הביקורת של עצמה. הרי הילדים קיבלו את הירקות גם בצלחות לבנות וגם בצלחות עם ציורי ירקות ופירות. אבל לדעתי זה לא מספיק.

יש המון סוגים של צלחות לילדים, עם ציורים של בוב הבנאי, דמויות דיסני, מפרץ ההרפתקאות, תומס הקטר, והרשימה עוד ארוכה. האם יכול להיות שהשינוי שנצפה הוא בגלל עצם הציורים עצמם ולא בגלל שמדובר בציורים של ירקות ופירות? אולי ילד שארוחתו מוגשת בצלחת עם ציורים של גיבור העל החביב עליו יאכל גם הוא יותר ירקות? זו שאלה שצריכה להישאל, והניסוי שנערך לא עונה על השאלה הזו. קבוצת ביקורת יכולה לענות על השאלות הלאה. לדעתי דרושות בניסוי כזה שתי קבוצות ביקורת. באחת מהן הילדים מקבלים בתחילה צלחות לבנות, ולאחר מכן צלחות של תומס הקטר, דיסני או גיבורי על, בהתאם לגילם. בקבוצת הביקורת השנייה יהיו ילדים שבתחילה יקבלו צלחות מצויירות “רגילות”[1] ולאחר מכן צלחות עם ציורים של ירקות ופירות.

בעיה רביעית – מה המשמעות של כל זה?

קודם כל, מתברר כי נצפה שינוי מובהק סטטיסטית לגבי צריכת הירקות, אך לא נצפה שינוי מובהק סטטיסטית לגבי הפירות. החוקרים התייחסו לכך במשפט קצר: הסבר אפשרי, הם אמרו, הוא ceiling effect. באופן פורמלי הם צודקים. ceiling effect הוא מונח סטטיסטי, וזה מה שקרה כאן. לשאלה החשובה באמת הם לא ענו: מדוע נגרם האפקט הזה?

והשאלה הכי חשובה: האם השינוי המובהק הוא גם משמעותי? מה המשמעות של הבדל של 14 גרם (סליחה, 13.82 גרם?) החוקרים לא התייחסו לשאלה הזו. אני אתן לכם קצת חומר למחשבה. הלכתי לסופרמרקט ושקלתי שם מלפפון אחד ועגבנייה אחת (כן, זה מדגם קטן, אני יודע). משקלו של המלפפון היה 126 גרם, ומשקל העגבנייה היה 124 גרם[2]. זאת אומרת, כל ילד אכל בממוצע עוד חצי ביס של עגבנייה או מלפפון. יכול להיות שזה אכן משמעותי מבחינה בריאותית ו/או תזונתית. החוקרים לא התייחסו לשאלה הזאת וגם לא העורכים של כתב העת.

סיכום

יכול להיות שצלחות עם ציורי ירקות ופירות גורמות לילדים לאכול יותר ירקות ופירות. זו אכן השערה מעניינת. המחקר שתואר כאן לא נותן תשובה לשאלה הזו. האופן שבו הוא תוכנן ובוצע כלל לא מאפשר לקבל אפילו תשובה חלקית לשאלה הזו, וזאת ככל הנראה בשל העדר חשיבה סטטיסטית בסיסית.


הערות
  1. שוב: דיסני, תומס הקטר וכדומה []
  2. למרבה הצער, למאזניים של שופרסל יש דיוק/precision מוגבל []

איך יודעים כמה אנשים מתים מנזקי העישון

מחדליו של סגן שר הבריאות בנושא המלחמה בעישון, תוארו בדו”ח של מבקר המדינה מחודש מאי 2018. בין היתר נאמר כי בכל שנה מתים בישראל כ-8,000 בני אדם כתוצאה ממחלות הנגרמות מעישון. יש לי הרבה מה לומר על אוזלת היד וחוסר המעש של מקבלי ההחלטות בנושא, אבל כאן אני מדבר בעיקר על סטטיסטיקה, והנושא שיעלה היום לדיון הוא הנתון בדבר המוות של 8000 בני אדם בשנה כתוצאה מעישון. איך יודעים את זה?

זהו כמובן אומדן שמתבסס על איסוף נתונים ויישום של שיטות סטטיסטיות. גם זה, כמו הרבה דברים אחרים, מתחלק לשלושה חלקים. החלק הקשה הוא החלק שבו אוספים את הנתונים. החלק הקל הוא החלק שבו מחשבים את החישובים (מזינים את הנתונים למחשב ולוחצים על הכפתור). וביניהם יש את החלק בו צריכים להבין מה עושים, ובאופן עקרוני זה לא מסובך.

כמה אנשים מתים?

נתחיל באיסוף הנתונים. נתון אחד שצריך לדעת הוא כמה אנשים מתים בכל שנה. זה לא קשה, לפחות במדינה מסודרת שבה נאספים נתונים כאלה באופן מסודר וקבוע. נתוני תמותה נאספים בדרך כלל במשך שנים רבות. הלשכה המרכזית לסטטיסטיקה מפרסמת בכל חמש שנים לוחות תמותה המבוססים על הנתונים שנאספו בחמש השנים שקדמו לשנת הפרסום. מייד נעיין באחד הלוחות (קישור לקובץ pdf). הנה קטע מלוחות התמותה של הלשכה המרכזית לסטטיסטיקה, המתייחס לגברים יהודים ואחרים (כלומר – לא ערבים), בין השנים 2011 ל-2015:

 

 

 

 

 

 

 

אני יודע שהסיכוי שלי למות בסופו של דבר הוא 100%. אבל אני בעזרת לוח התמותה יכול לדעת יותר מזה. אני גבר יהודי בן 55, ומהשורה האחרונה של לוח התמותה שבתמונה אני יכול ללמוד כי בהיעדר כל מידע נוסף, הסיכוי כי אמות בשנה הקרובה הוא 0.00425. לחילופין, על פי נתוני הלשכה, מתוך כל 100000 גברים יהודים, 95506 יגיעו לגיל 56, ו-4494 לא יזכו לכך. אני יודע שיש חוסר תיאום בין שני המספרים האלה, וזה נובע מתוך דקויות סטטיסטיות שלא אכנס אליהן כאן[1]. אני גם יכול ללמוד מהלוח כי תוחלת החיים שלי, בהינתן שכבר הגעתי לגילי המופלג, היא 27.6 שנים פלוס מינוס סטיית תקן ואירועים לא צפויים. יש גם סיכוי שאגיע לגיל 100, אך הוא קטן למדי.

לעומת זאת, לגבר ערבי בגיל 55 במדינת ישראל, הסיכוי למות לפני גיל 56 יותר גבוה: 0.00595, ותוחלת החיים שלו נמוכה יותר: נותרו לו, בממוצע, רק עוד 24.9 שנים לחיות.

איזה נתונים צריך כדי לאמוד את סיכוני העישון?

הנתון השני צריך לאפשר לנו לאמוד כמה אנשים מתו מנזקי עישון. זה כבר יותר מסובך. כולם מתים בסוף, גם אלה שמעשנים וגם אלה שלא. אדם יכול לעשן ולמות מסיבה שלא קשורה לעישון (אולי ממחלה זיהומית, אולי מתאונה, ואולי אפילו מסרטן שעישון אינו גורם סיכון שלו – יש סרטנים כאלה). אדם יכול לא לעשן ובכל זאת למות מסרטן הריאות או מחלת לב – כאשר עישון הוא גורם סיכון ידוע לשני המצבים הבריאותיים האלה.[2] ובכל זאת, הנתונים שיש לאסוף הם כמה אנשים מתים, כמה מהם מעשנים, וכמה לא.

במקומות רבים בעולם נערכים מחקרים תצפיתיים ארוכי טווח העוקבים אחרי מהלך החיים של אוכלוסיות, ואוספים נתונים על התנהגויות העשויות להשפיע על מצב הבריאות של הפרטים באוכלוסייה, כגון הרגלי אכילה ועישון. המחקר הידוע ביותר נערך בעיר פראמינגהם במדינת מסצ’וסטס בארצות הברית. החל משנת 1948 נאספים נתונים כאלה על אלפים מתושבי העיר שהסכימו להשתתף במחקר, והוא עוקב כעת אחרי הדור השלישי של התושבים. באתר המחקר תוכלו למצוא מחשבונים שבעזרתם תוכלו לדעת מה הסיכון שלכם ללקות במחלת לב. המחקר הזה הראה כי עישון הוא גורם סיכון משמעותי לסיכוי לחלות במחלת לב.

מחקר אחר, קצת ישן (משנת 1999) שערכו יעקובס ועמיתיו, עקב אחרי אוכלוסייה של כ-12000 איש בשבע מדינות במשך 25 שנים. המחקר אסף נתוני תמותה מכל סיבה שהיא, וכמובן נתונים נוספים. אחת המסקנות של המחקר הזה הייתה כי הסיכון למות של מעשנים המעשנים עד 10 סיגריות ביום גבוה פי 1.3 מהסיכון של לא מעשנים, והסיכון למות של אלה המעשנים יותר מ-10 סיגריות ליום גבוה פי 1.8 מאלה של הלא מעשנים. ללא הסבר המספרים האלה נראים תמוהים. מה זאת אומרת שהסיכון למות גבוה פי 1.8? כולם מתים בסוף. הסיכון למות הוא 100% לכולם. לא? לא. הסיכוי שאדם ימות בסופו של דבר הוא אכן 100%. הסיכון הוא לא סיכוי. אז בואו נעשה סדר.

איך מודדים את הסיכון

הסיכון נגזר מהסיכוי למות (או לחוות אירוע אחר כלשהו, כמו התקף לב למשל) במשך יחידת זמן מוגדרת, ומתייחס לנקודה ספציפית בזמן (או לתקופת זמן קצרה מאוד). אל תיבהלו, אבל אני אומר לכם שהסיכון הוא הנגזרת של ההסתברות המותנה למות (אתם יכולים לעבור הלאה בלי חשש). הסיכוי, לעומת זאת, מתייחס לתקופות זמן ארוכות יותר.

אני לא אכנס כאן להגדרה המתמטית המדוייקת של הסיכון. אומר רק שאם יודעים את הסיכוי למות במשך תקופת מסויימת, נניח שנה, אפשר לחשב מכך את הסיכון למות במשך אותה תקופת זמן. גם ההיפך נכון: אם יודעים את הסיכון אז יודעים את הסיכוי. כמו כן, באופן לא מפתיע, אם הסיכוי שלך למות בשנה הקרובה גבוה יותר, אז גם הסיכון שלך גבוה יותר.

ואם אפשר לעשות את האבחנה הזו בין יהודים וערבים, ובין גברים לנשים, בוודאי שאפשר לחשב את הסיכון של המעשנים ולהשוות אותו לסיכון של הלא מעשנים.

הכלי הסטטיסטי שמאפשר לבצע את התרגילים האלה הוא מודל הסיכונים הפרופורציונליים שפותח בשנת 1972 על ידי הסטטיסטיקאי הבריטי סיר דויד קוקס, וידוע גם בשם מודל קוקס. קשה להמעיט בחשיבות של המודל הזה. המאמר שבו הוצג המודל נמנה עם 100 המאמרים המדעיים המצוטטים ביותר בכל הזמנים – לא מאמרים בסטטיסטיקה, אלא כל המאמרים המדעיים.  המודל מאפשר לזהות גורמי סיכון  להתרחשות אירועים כגון מוות, ולמדוד מה פוטנציאל הסכנה בכל גורם סיכון כזה. בנוסף לכך, קוקס הציג במאמר שלו חידושים סטטיסטיים נוספים שהשפיעו רבות גם על תחומים אחרים בסטטיסטיקה. אילו היה פרס נובל לסטטיסטיקה, סיר דויד קוקס היה זוכה בו ללא צל של ספק. סיר קוקס אכן זכה כמעט בכל פרס אפשרי בתחום הסטטיסטיקה. המודל שלו בפירוש מאפשר הצלת חיים. לדעתי סיר קוקס ראוי לזכייה בפרס נובל לרפואה.

להלן נוסחת המודל. מייד אסביר הכל. ניתן לראות כי זהו למעשה מודל רגרסיה.

 

 

נתחיל בצד שמאל. שם מופיע הסיכון כפי שהוא מושפע מגורמי הסיכון – אותו אנחנו רוצים לאמוד. הוא מסומן באות למבדה – האות היוונית שדומה לאות ג. בצד ימין יש מכפלה של שני חלקים. חלק אחד מתאר את הסיכון הבסיסי – כאשר אין שום אינפורמציה. הוא מסומן בלמבדה אפס טי. הסיכון הבסיסי נקבע רק על פי נתוני התמותה. לכל אדם במדגם נתון האם הוא מת, אם כן, מתי, ואם לא, כמה שנים הוא חי עד למועד שבו הוחלט להפסיק את המעקב ולהזין את הנתונים למודל. החלק השני מכיל את גורמי הסיכון האפשריים, כגון גיל, מין, הרגלי אכילה, וגם כמובן משתנה המציין האם האדם שבמדגם מעשן או לא. גורמי הסיכון מסומנים באיקסים. לכל X יש מקדם שמסומן באות ביתא. אם ביתא שונה באופן משמעותי מאפס זה אומר שלמשתנה X יש השפעה משמעותית על הסיכון. אם ביתא חיובי זה אומר שהסיכון גדל ככל ש-X גדל, ואם ביתא שלילי זה אומר של-X יש דווקא השפעה חיובית. רמת הסיכון עולה (או יורדת) באופן פרופורציוני לערכו של .X[3] מכאן נובע שם המודל – מודל הסיכונים הפרופורציוניים. לאחר שאומדים את הפרמטרים של המודל אפשר, באופן תיאורטי, לחשב את הסיכון לאדם מעשן ולאדם לא מעשן.[4] בפועל, המודל מספק ישירות אומדן ליחס שבין הסיכונים, ה-hazard ratio. היחס הזה מתבטא במקדם הביתא של משתנה העישון.

למודל יש כמובן גם הנחות. החשובה שביניהן היא ההנחה כי יחס הסיכונים נשאר קבוע לאורך כל תקופת המעקב. זו הנחה חזקה, ובדרך כלל היא נכונה, וגם אם יש סטייה לא גדולה מההנחה הזו המודל מספיק עמיד (robust) כדי לספק אומדן טוב של הסיכון. יש הרחבות למודל שבהן מחליפים את ההנחה הזו בהנחה יותר גמישה אם יש צורך. אחד המודלים הידועים שמרחיבים את מודל קוקס פותח על יד שילה בירד.

איך מתרגמים את הנתונים למספרים

עכשיו נוכל לעשות את החישובים.

יש לנו את ההסתברויות למות בכל גיל מלוחות התמותה. יש לנו את גם יחס הסיכונים שהוא כזכור היחס בין הסיכון למות של אנשים המעשנים יותר מ-10 סיגריות ביום ובין הסיכון של לא מעשנים. זכרו כי זהו יחס הסיכונים לנקודה ספציפית בזמן. מתוך יחס הסיכונים אפשר לחשב את  יחס הסיכויים: היחס בין ההסתברויות למות במשך תקופת זמן מוגדרת, שנה למשל. בשביל זה יש נוסחה. אני אחסוך לכם אותה. יש בה אינטגרלים ואקספוננטים, וזה בדרך כלל לא טוב לבריאות. אם אתם ממש רוצים  אז אתם יכולים לקרוא כאן, למשל, אבל זה על אחריותכם (קישור לקובץ  pdf). אני חוסך את זה גם לעצמי, ואשתמש בנתון מתוך מאמר אחר מאת מהטה ופרסטון משנת 2012. לפי הנתונים במאמר הזה, יחס הסיכויים למוות בתקופת זמן של שנה, בין גברים מעשנים וגברים לא מעשנים הוא בערך 2.3 (לקחתי את הגבול התחתון של רווח הסמך, כדי לקבל הערכה שמרנית), לאחר תקנון לגיל, וזאת בארצות הברית, בשנים 1987 עד 2006.

אנחנו צריכים עוד נתון אחד והוא שיעור המעשנים באוכלוסייה. לצורך הדוגמה אשתמש בנתונים של משרד הבריאות משנת 2017, לפיהם כ-30% מהגברים מעל גיל 21 הינם מעשנים..

כשיש לנו את כל הנתונים מה שנשאר זה קצת אלגברה של בית ספר תיכון.[5]

נניח שהסיכוי של מעשן בן 55 למות לפני גיל 56 הוא X, והסיכוי של לא מעשן הוא Y. לפני הנתון של מהטה ופרסטון, X גדול פי 2.3 מ-Y, כלומר X=2.3Y. זה נותן לנו משוואה אחת המקשרת בין X ל-Y.

את המשוואה השנייה נגזור מתוך מה שידוע בשם נוסחת ההסתברות השלמה.  ניתן להציג את החישוב בצורת עץ הסתברויות:

 

 

 

 

 

 

 

 

 

מהי ההסתברות של גבר בן 55 למות? ההסתברות הזו שווה להסתברות שלו למות אם הוא מעשן שהיא כאמור X כפול ההסתברות שהוא מעשן, שהיא 30%, ולכך יש להוסיף את ההסתברות שלו למות אם הוא לא מעשן, Y, כפול ההסתברות שהוא לא מעשן, שהיא 70%.  כל זה צריך להיות שווה ל-0.00425, כלומר 0.3x+0.7y=0.00425.

עכשיו יש לנו שתי משוואות בשני נעלמים ואפשר לפתור אותן. הפתרון הוא ש-X, ההסתברות שגבר יהודי מעשן בן 55 ימות לפני שיגיע לגיל 56 – שווה ל-0.00703237, ואילו Y, ההסתברות שגבר יהודי בן 55 שאינו מעשן ימות לפני שיגיע לגיל 56 היא הרבה יותר נמוכה: 0.00305755.

כזכור, על פי לוח התמותה, ההסתברות שגבר בן 55 ימות לפני שיגיע לגיל 56 היא 0.00425. זה אומר שאם יש לנו 100000 גברים כאלה, אז בממוצע ימותו במהלך השנה 425 מהם. אם לעישון אין השפעה על ההסתברות למות, אז 30% מהמתים יהיו מעשנים: בערך 128 איש.

אבל אנחנו יודעים שההסתברות למות שונה למעשנים ולא מעשנים.

בין 100000 הגברים יש 30000 מעשנים, ולכל אחד מהם הסתברות למות השווה כאמור ל- 0.00703237. זה אומר שמתוכם ימותו 210 איש – 82 איש יותר ממה שהיה צריך להיות אילו לעישון לא הייתה השפעה. 82 האנשים האלה מתו לכן בגלל שהיו מעשנים.

כך אפשר לערוך את החישוב לכל מין, לכל גיל, ולכל קבוצת אוכלוסייה למעשה. אם עושים את החשבון עם כל הנתונים המדוייקים (שלא היו בידיי), אז מגיעים ל-8000 מחברים את תוצאות כל החישובים ומגיעים למספר הכולל.

מה בקשר לעישון פאסיבי

העקרון הוא אותו עיקרון, אם כי היישום יותר מסובך. אני חייב להודות שאני לא יודע באיזה שיטה משתמשים כדי לאמוד את מספר הנפגעים מעישון פאסיבי.

בגדול יש שתי אפשרויות: להגדיר באופן כלשהו משתנה המציין אם אדם נחשף לעישון פאסיבי או לא נחשף, ואז החישוב הוא כפי שנעשה קודם. אפשרות שניה היא להגדיר את רמת החשיפה לעישון פאסיבי כמשתנה כמותי ואז יחס הסיכונים פרופורציונאלי לרמת החשיפה. ברמה העקרונית החישוב נשאר אותו חישוב, אלא שכאן מדובר במשתנה רציף ולכן הפירוק להסתברויות לפי רמת החשיפה מסובך יותר.

כמה מילים בנימה אישית

וכאן אני רוצה לומר כמה מילים אישיות.

אני חושב שהנתון כי בכל שנה מתים בישראל 8000 איש מנזקי עישון הוא מזעזע. אם מחר תפרוץ חלילה מלחמה וימותו בה 8000 איש העם יצא לרחובות. אם השנה ייהרגו 8000 איש בתאונות דרכים, שר התחבורה והשר לביטחון פנים לא יוכלו להתחמק מאחריות. 8000 מתים בשנה פירושם יותר מ-20 מתים כל יום. אם חלילה יתרחש פיגוע וייהרגו בו 20 איש, אף אחד לא יחכה שהמספר יצטבר ל-8000 לפני שיידרשו לעשות משהו, ובצדק.

כמו שאמר סטאלין, מוות אחד הוא טרגדיה אבל 8000 מתים הם כנראה רק סטטיסטיקה. לסטטיסטיקה הזו אחראים המנהיגים שלנו ומקבלי ההחלטות. בשנת 2011 הוכרזה תכנית לאומית למלחמה בעישון ובנזקיו. בפועל לא קרה כמעט כלום. הגיע הזמן לתכנית חדשה, והפעם זו צריכה להיות תכנית חירום לאומית למלחמה בעישון. עכשיו.

 

 

 


הערות
  1. אתם מוזמנים לקרוא את דברי ההסבר בקובץ לוחות התמותה []
  2. נשאלת כמובן השאלה איך יודעים שאלה גורמי סיכון, והתשובה תתברר מייד []
  3. באופן יותר מדוייק: ההשפעה היא פרופורציונית לגבי הלוג של יחס הסיכונים []
  4. את זה עושים על ידי כך שקובעים ש-X הוא משתנה שמקבל שני ערכים: 0 אם האדם לא מעשן, 1 אם הוא כן מעשן. כאשר X שווה ל-1 נוסף הערך ביתא לסכום המשוקלל של גורמי הסיכון []
  5.  אני יודע שאני עושה פה סלט: נתונים מארצות הברית מסוף המאה העשרים ותחילת המאה העשרים ואחת, ונתונים מישראל. הכל נעשה לצורך הדגמה. אל תסיקו מסקנות מהמספרים שתראו בהמשך. []