חיפוש באתר

קישורים

עמודים

קטגוריות

ארכיב עבור 'ביוסטטיסטיקה'

הגלולה למניעת הריון והסיכון למוות עקב פקקת ורידים

מחקר משנת 1995 דיווח כי שימוש בגלולה למניעת הריון הכפיל את הסיכון למוות עקב פקקת ורידים. איזה נתון סטטיסטי דווח כאן?

השאלון מציע ארבע תשובות אפשריות: המצאות (prevalence), סיכון מוחלט (Absolute risk), מדד g של כהן  למדידת גודל האפקט[1], וגם את התשובה הנכונה שהיא הסיכון היחסי (relative risk) המכונה לעיתים בשם יחס הסיכונים (risk ratio).

אסביר תחילה את נושא הסיכונים באמצעות דוגמה[2], ואחר כך אתייחס לנושא הקשר בין הגלולה למניעת הריון לפקקת הורידים.

כשאנחנו מדברים על סיכונים, יש שני מושגי יסוד: הראשון הוא גורם הסיכון: למשל עישון, שימוש בגלולה למניעת הריון או השתתפות בקורס מבוא לסטטיסטיקה. המושג השני הוא התוצא הבריאותי, כגון תחלואה בסרטן, פקקת ורידים או היהפכות לזומבי.

הסיכון המוחלט הוא ההסתברות שהתוצא הבריאותי יארע. בדרך כלל אומדים אותו כפרופורציה באוכלוסייה. נניח לדוגמה כי באוכלוסייה של  10000 אנשים בריאים 20 אנשים הפכו לזומבים. אם נחלק 20 ב-10000 ואחר כך נכפיל במאה נקבל כי הסיכון המוחלט להפיכה לזומבי הוא 0.2%.

לעומת זאת, בקבוצה של 10000 סטודנטים שנחשפו לקורס מבוא לסטטיסטיקה, 40 סטודנטים הפכו לזומבים, וזה סיכון של 0.4%. החשיפה לקורס הכפילה את הסיכון פי 2, מ-0.2% ל-0.4%. אנו אומרים לכן כי הסיכון היחסי הוא 2.

אבל צריך להיזהר מסיכונים יחסיים, כי הם לא משקפים את העלייה בסיכון. בדוגמת הזומבים, הסיכון הוכפל אבל עלה רק ב-0.2%. לא צריך לזלזל, אבל צריך גם לשמור על פרופורציות. לטעמי, דיווח של הפרש הסיכונים מועיל יותר להערכת סיכונים מאשר דיווח על הסיכון היחסי.

מה בקשר לפקקת הורידים?

אזהיר תחילה כי אין להסתמך על הנתונים שאביא כאן כדי לקבל החלטה כזו או אחרת או כדי להמליץ המלצות. יש כאן הערכות שרמת הדיוק שלהן לא ידועה, והנחות שרירותיות שאניח לצורך ההדגמה.

על פי ויקיפדיה, הסיכון המוחלט לפקקת ורידים אצל נשים המשתמשות בגלולה למניעת הריון הוא 60 מקרים ל-100000 שנות חיים, לעומת 30 אצל נשים שלא משתמשות בגלולה.[3] כלומר, הסיכון אכן מוכפל, והסיכון היחסי לתחלואה הוא 2. הסיכון היחסי למוות כנראה דומה, אך לא ברור האם יש הבדל בשיעורי התמותה בין נשים המשתמשות בגלולה ונשים שאינן משתמשות בגלולה. שיעורי התמותה תוך שנה מאירוע הפקקת נעים בין 50% ל-90%, תלוי במקרה הספציפי. על פי מכון קוקריין, יחס הסיכונים גבוה יותר ומגיע במקרים מסויימים עד ל-3.5 – תלוי בהרכב הגלולה ומשך השימוש. בהחלט אין להקל ראש בסיכון הזה, אבל כפי שציינתי קודם, חשוב יותר לדעת את הפרש הסיכונים. אני אשתמש בנתוני ויקיפדיה כדי להדגים זאת.

מה הכוונה ב-100000 שנות חיים? הסיכון משתנה עם רמת החשיפה. אין דין אישה שהשתמשה בגלולה במשך שנתיים כדין אישה שהשתמשה בגלולה 15 שנה. לכן יש לשקלל את נתוני התחלואה במשך השימוש בגלולה. בואו נניח, לצורך הדוגמה בלבד, כי אישה ממוצעת משתמשת בגלולה במשך 20 שנים. לכן מאה אלף שנות חיים שקולות ל-5000 נשים[4]. 30 מקרים מתוך 5000 הם 6 מתוך 1000, כלומר ניתן, תחת ההנחה הנ”ל,[5] כי בקרב נשים שלא משתמשות בגלולה, 6 מתוך כל 1000 יחלו בפקקת העורקים, ובקרב הנשים המשתמשות בגלולה 12 מתוך כל 1000 יחלו. בדוגמה זו, השימוש בגלולה יוסיף עוד 6 נשים חולות לכל 1000. זהו נתון שממחיש את רמת הסיכון: עוד 6 נשים מכל 1000 יחלו, ובסיכוי גבוה גם ימותו, אם ישתמשו בגלולה למניעת הריון במשך 20 שנה. לדעתי מידע זה מאפשר החלטה מושכלת יותר לגבי נטילת הסיכון.

 

רשימה זו היא הרשימה השלישית בסדרת רשימות העוסקות בהערכת נתונים סטטיסטיים רפואיים, ומסתמכת על השאלון של מרכז וינטון לתקשורת סיכונים ועדויות כמותיות באוניברסיטת קיימברידג’.

 

ראו גם:


הערות
  1. אין דבר כזה: יש Cohen’s d וגם Hedegs’ g []
  2. לא אתייחס כאן לנושאי ההמצאות וגודל האפקט []
  3. הנתון של 60 מקרים הוא למעשה ממוצע, כיוון שהסיכון משתנה בהתאם לסוג הגלולה והרכבה []
  4. 5000×20=100000 []
  5. שימוש ממוצע של 20 שנה בגלולה []

שאלון יכולת הערכת נתונים סטטיסטיים רפואיים – אוניברסיטת קיימברידג’

מרכז וינטון לתקשורת סיכונים ועדויות כמותיות באוניברסיטת קיימברידג’ פירסם לאחרונה שאלון/חידון שנועד לעוסקים בתחומי הרפואה והבריאות להעריך את יכולתם בהבנת נתונים סטטיסטיים אודות התועלת והנזק של טיפולים רפואיים.

גם אם אינכם עוסקים בתחומים האלה, אני חושב שכדאי שתכירו חלק מהמושגים האלה. אתם יכולים כמובן לנסות לענות בכל מקרה, ולאחר שתסיימו לענות על כל השאלות, תוכלו לקרוא את התשובות הנכונות בתוספת הסבר קצר לכל תשובה.

הנכם מוזמנים לקרוא:

האם קנאביס רפואי יכול לסייע במלחמה במגיפת האופיואידים?

מחקר שפורסם ב-25 באוגוסט 2014 בכתב העת היוקרתי JAMA עורר מהומה רבה, ובצדק. המחקר גילה קשר סטטיסטי[1] בין חוקים שמסדירים את השימוש בקנאביס לצרכים רפואיים (להלן: “קנאביס רפואי“) שחוקקו במדינות שונות בארה”ב ובין שיעורי התמותה במדינות אלה עקב מינון יתר של אופיואידים: נצפתה ירידה של כ-25% בשיעורי התמותה במדינות אלה, בהשוואה למדינות שבהן לא קיימים חוקים כאלה. מחקר נוסף שפורסם כחמש שנים מאוחר יותר, ב-10 ביוני 2019, טוען לכאורה כי הקשר הוא הפוך. מה קורה כאן? ברשימה זו אסקור את שני המאמרים ואחווה את דעתי בנושא.

נתוני רקע

עד 1999, חוקים שהסדירו את השימוש בקנאביס לצרכים רפואיים היו קיימים רק בשלוש מדינות בארצות הברית. במהלך 11 השנים הבאות (1999-2010) נחקקו חוקים דומים בעוד 10 מדינות. 9 מדינות נוספות חוקקו חוקים דומים בין 2010 ל-2014. נכון למועד כתיבת שורות אלה, לקנאביס רפואי יש מעמד חוקי ב-33 מדינות. קהל היעד של הקנאביס הרפואי כולל שתי קבוצות אוכלוסייה עיקריות: חולי סרטן, וחולים הסובלים מכאבים כרוניים שאינם קשורים למחלת הסרטן.

טיפול נפוץ לקבוצת האוכלוסייה השנייה הוא מתן משככי כאבים, ולאורך השנים חלה עליה במתן מרשמים לתרופות משככות כאבים המבוססות על שימוש באופיואידים – קבוצת תרכובות הנקשרות לקולטני האופיואיד במערכת העצבים ובמקומות אחרים בגוף. לשימוש באופיואידים יש מחיר כבד: התמכרויות, ומקרי מוות רבים עקב מינון יתר. ברשימה זו לא אדון בגורמים ל-“מגיפת האופיואידים” ובדרכים בהם מנסים להילחם בה.

מחקר ראשון – JAMA 2014

המחקר, שנערך על ידי קבוצת חוקרים שרובם מאוניברסיטת פנסילבניה, שאל שאלה פשוטה: האם יש קשר בין התרחבות השימוש בקנאביס רפואי ובין שיעורי התמותה עקב מינון יתר של אופיואידים.

החוקרים תיארו שני תרחישים אפשריים. בתרחיש הראשון, הנישות לקנאביס רפואי תביא למעבר של חולים משימוש באופיואידים לשימוש בקנאביס, ומעבר זה יגרום להפחתת השימוש באופיואידים ולירידה במקרי המוות עקב מינון יתר. בתרחיש השני, השימוש בקנאביס יוביל לשימוש באופיואידים, כיוון שכעת ניתן לטפל בחולים שלא היו מעוניינים באופיואידים בעזרת קנאביס רפואי, והשיפור ישכנע אותם להיות פתוחים לשימוש בחומרים פסיכו-אקטיביים חזקים יותר, כלומר אופיואידים.

לאחר שאספו את הנתונים הרלוונטיים וניתחו אותם, בישרו החוקרים כי התשובה לשאלת המחקר היא כן. במדינות עם חוקי הקנאביס נצפתה ירידה ממוצעת של 25% במספר מקרי המוות עקב מינון יתר של אופיואידים לאורך השנים מ-1999 עד 2010.

ניתוח הנתונים שביצעו[2] עבור השנים 1999 עד 2010 הראה שקיים קשר, והוא חיובי. אני מצטט: “במדינות עם חוקי קנאביס רפואי, הממוצע השנתי של שיעורי התמותה עקב מינון יתר של אופיואידים היה נמוך ב-ב-24.8% בהשוואה למדינות שבהן לא היו חוקים כאלה”. החוקרים אמדו כי מספר מקרי המוות עקב מינון יתר של אופיואידים היה נמוך ב-1729 ממה שהיה צפוי אילו חוקי הקנאביס לא היו קיימים. החוקרים ביצעו ניתוחים נוספים שאוששו את המסקנה שעלתה מניתוח המודל הראשי, וניתוחים אלה אף הציגו תוצאות מעודדות יותר (אם כי תחת יותר הנחות). לדעתי המקצועית אין כל פגם בניתוחים הסטטיסטיים שבוצעו, לפחות על פי הסקירה שהובאה במאמר.

מעניין לציין כי לאורך כל השנים האלה הייתה עליה בשיעור מקרי המוות עקב מינון יתר, גם במדינות שבהן היו חוקי מקנאביס רפואי וגם באלה שלא: ב-1999 שיעור מקרי המוות היה כ-2 חולים למאה אלף, וב-2010 השיעור כבר היה כ-6 מקרים למאה אלף[3]. במדינות הקנאביס הרפואי הייתה ירידה נומינלית קטנה בשיעור מקרי המוות בין 2009 ל-2010 (כחצי מקרה מוות למאה אלף). אני לא מזלזל בירידה הזו: מדובר במאות חיים שניצלו, אבל אין לירידה הזו משמעות סטטיסטית.

כמו כן, לאורך כל תקופת המחקר שיעורי המוות עקב מינון יתר של אופיואידים דווקא היו יותר גבוהים במדינות עם חוקי הקנאביס הרפואי – הפער היה כ-1 עד 2 מקרים לכל מאה אלף איש. אם כך, מה המשמעות של ירידה של 25%? הירידה היא בהשוואה למספר המקרי המוות שהיו אמורים להתרחש במדינות אלה אילו לא היו קיימים בהן חוקי קנאביס רפואי.

אבל הדברים לא כל כך פשוטים[4]. הדיון בתוצאות, שנמשך על פני כמעט עמוד שלם משופע במילים may, if, ו-although: יתכן, אם, אמנם. החוקרים מדגישים כי התוצאות שהוצגו אינן מבססות קשר סיבתי, וכי יש צורך במחקרים נוספים.

החקרים מציינים גם את המגבלות של המחקר: ראשית, מדובר בנתונים מקובצים. כלומר, הנתונים מתייחסים לסך מקרי המוות בכל מדינה בכל שנה, ולא על נתונים ברמת החולה. שנית, ייתכן ויש הטיה בנתונים, כיוון שמדינות שונות מדווחות את נתוני התמותה באופן שונה, וייתכן כי מקרה מוות שנחשב כתוצאה של מינון יתר של אופיואידים במדינה אחת לא ייחשב לכזה במדינה אחרת. שלישת, ייתכן ויש משתנים נוספים המשפיעים על שיעורי התמותה שהמחקר לא לקח בחשבון. החוקרים מודעים לכך שייתכן והנתונים של השנים הבאות יראו תמונה שונה. ולבסוף הם מדגישים שוב כי ההשערות לגבי התהליך בו הרחבת השימוש בקנאביס רפואי משפיעה על שיעורי התמותה עקב מינון יתר הינם ספקולטיביים, ומתבססים על עדויות עקיפות.

אבל, אחרי כל ההסתייגויות, אני חושב שתוצאות מחקר זה הינן אופטימיות, והן פתחו תקווה למיגור, לפחות חלקי, של מגיפת האופיואידים.

מחקר שני – PNAS 2019

המחקר הראשון התמקד כמובן בנתונים שהו זמינים כאשר הוא נערך, כלומר בשנים 1999 עד 2010. בינתיים עברו חמש שנים, והצטבר נתונים נוספים. כדאי לכן לבדוק מה קרה בינתיים. קבוצת חוקרים מאוניברסיטת סטנפורד, אוניברסיטת ניו יורק ומכון מחקר בפאלו אלטו חברה לקחת על עצמה את המשימה. הם אספו את הנתונים באותן שיטות שבהן השתמשו החוקרים במחקר הראשון, וניתחו אותם באותן שיטות סטטיסטיות. התוצאות פורסמו בכתב העת הלא פחות יוקרתי PNAS.

למחקר החדש יש שתי תוצאות עיקריות. ראשית, הוא מאשר את תוצאות המחקר הראשון. הניתוח החוזר העלה כי הירידה במספר מקרי המוות עקב מינון יתר של אופיואידים לאורך השנים 1999עד 2010 הייתה 21.1%, ולדברי החוקרים ההבדל בין שתי התוצאות אינו משמעותי מבחינה סטטיסטית[5] . אבל, וזה אבל גדול, מה שקרה בין 2010 ל-2017 שונה לגמרי. בשנים האלה המגמה התהפכה,  והייתה עליה של 23% בשיעור מקרי המוות.

החוקרים מתייחסים ל-“תיאוריית ההחלפה” שהוצגה במאמר הראשון כהסבר אפשרי לקשר סיבתי בין הרחבת השימוש בקנאביס רפואי וירידת שיעור מקרי המוות מאופיואידים. הטענה היא כי חולים המשתמשים באופיואידים יעברו לשימוש בקנאביס שיחליף את האופיואידים כמשכך כאבים. אם תיאוריה זו נכונה, אומרים החוקרים, אנחנו אמורים לראות אפקטים שונים בין המדינות, הנובעים מהשוני שבין חוקי הקנאביס, בעיקר ברמת ה-THC (החומר הפעיל בקנאביס) המותרת. במדינות המרשות שיעור THC  נמוך הקשר בין השימוש בקנאביס רפואי ושיעור מקרי המוות אמור להיות חלש יותר. במדינות בהן יש לגליזציה מלאה של קנאביס, ולכן שיעורי ה-THC בקנאביס המשווק במדינות אלה גבוהים יותר, אנחנו אמורים למצוא קשר יותר חזק. אבל, הנתונים מראים שלא כך הוא.

החוקרים מציינים כי יש אמנם עוד מחקרים שהראו תוצאות דומות למחקר מ-2014, אך יש בעייתיות בקביעת מדיניות המרחיבה את השימוש בקנאביס של סמך מחקרים אלו[6]. מדיניות כזו מבוססת על שתי הנחות. ההנחה הראשונה היא כי מסקנות שהסתמכו על מנתונים מקובצים ברמת האוכלוסייה תקפות גם ברמה האישית. לעיתים קרובות ההנחה הזו אינה נכונה, כפי שעולה ממחקרים רבים דומים בתחומים אחרים. כשל זה ידוע בשם the ecological fallacy והוא למעשה וריאציה של פרדוקס סימפסון. ההנחה השנייה היא כי הקשר הנצפה הוא סיבתי, וכאמור הנתונים לא עולים בקנה אחד עם ההנחה הזו. ראוי לציין כי גם החוקרים של המחקר הראשון ב-2014 התריעו על כשלים אלה.

החוקרים אומרים כי לדעתם אין קשר (חיובי או שלילי) בין הרחבת השימוש בקנאביס רפואי ובין שיעורי מקרי המוות עקב מינון יתר של אופיואידים. לדעתם, גם הקשר החיובי בשנים 1999 עד 2010 וגם הקשר השלילי בשנים 2010 עד 2017 הם קשרים אקראיים.

סיכום

אני נוטה יותר לתמוך בעמדה של קבוצת החוקרים שביצעה את המחקר השני. אין זה אומר שאני מזלזל במחקר הראשון. להיפך, הם עשו עבודה חשובה וטובה. הם היו מודעים למשמעות המוגבלת של התוצאות שלהם, הדגישו כי לא ניתן להסיק מסקנות סיבתיות על סמך התוצאות, ועם זאת הם לא שללו את האפשרות של קיום קשר סיבתי, אך גם כאן, הטענה כי ייתכן קשר סיבתי לא הייתה מופרכת, על פי הנתונים שהיו בידיהם. הם פירטו היטב את מגבלות המחקר שלהם, כולל אזהרה מפני הכשל האקולוגי.

המחקר השני שחזר את תוצאות המחקר הראשון, אך גם הציג תוצאות מנוגדות. בכך לדעתי נסתם לעת עתה הגולל על ההשערה כי לקנאביס הרפואי יהיה חלק, אפילו קטן, במיגור מגיפת האופיואידים, אם וכאשר. זה מאוד מצער אותי. בהחלט הייתי שמח אילו תיאוריית ההחלפה הייתה נכונה, וזאת למרות ההסתייגויות שיש לי מהנטייה  הרומנטית לייחס לקנאביס סגולות רפואיות לטיפול בכל דבר כמעט, וההתנגדות שלי ללגליזציה של קנאביס (אם כי אני כן תומך בדה-קרמינילזציה על פי המודל של פורטוגל ונורווגיה).

מעבר לחשיבות של הנושא, שני המחקרים האלה מהווים דוגמה מצויינת על ההבדלים בין מתאם וסיבתיות. אי אבחנה בין מתאם לסיבתיות היא כשל נפוץ, ששתי קבוצות החוקרים האלו לא נפלו בו. גם הטענה “מתאם אינו מעיד על סיבתיות” מועלה שוב ושוב, אבל היא בעיקר מעידה על חוסר הבנה של המושגים. הטענה הנכונה היא כי מתאם אינו מהווה עדות מספקת לסיבתיות, אבל כפי שכתבתי בעבר, אם יש מתאם, צריך בהחלט לבחון את האפשרות שיש גם סיבתיות. המחקר הראשון הראה מתאם והציג מנגנון סיבתי אפשרי, וכך היה ראוי לעשות. למראה הצער, ללא ציניות, המחקר השני הראה כי לא ניתן לטעון לסיבתיות על סמך הידע העכשווי. עם זאת, ייתכן ומחקרים בעתיד שיבדקו מה קורה ברמת החולה ולא ברמת האוכלוסייה יפתחו מחדש את הדלת להשערת הסיבתיות. ימים יגידו.

מקורות

 


הערות
  1. association []
  2. בעזרת מודלים של סדרות עיתיות, לא אכנס לפרטים []
  3. על פי הנתונים שהובאו במאמר []
  4. תיראו מופתעים []
  5. הם השתמשו בביטוי המעניין לכשעצמו “statistically indistiguishable ” []
  6. אחד החוקרים הוא מהמחלקה למדעי המדינה באוניברסיטת ניו יורק, וחוקרת נוספת היא המרכז ליישום חדשנות בפאלו אלטו, קליפורניה []

איך יודעים כמה אנשים מתים מנזקי העישון

מחדליו של סגן שר הבריאות בנושא המלחמה בעישון, תוארו בדו”ח של מבקר המדינה מחודש מאי 2018. בין היתר נאמר כי בכל שנה מתים בישראל כ-8,000 בני אדם כתוצאה ממחלות הנגרמות מעישון. יש לי הרבה מה לומר על אוזלת היד וחוסר המעש של מקבלי ההחלטות בנושא, אבל כאן אני מדבר בעיקר על סטטיסטיקה, והנושא שיעלה היום לדיון הוא הנתון בדבר המוות של 8000 בני אדם בשנה כתוצאה מעישון. איך יודעים את זה?

זהו כמובן אומדן שמתבסס על איסוף נתונים ויישום של שיטות סטטיסטיות. גם זה, כמו הרבה דברים אחרים, מתחלק לשלושה חלקים. החלק הקשה הוא החלק שבו אוספים את הנתונים. החלק הקל הוא החלק שבו מחשבים את החישובים (מזינים את הנתונים למחשב ולוחצים על הכפתור). וביניהם יש את החלק בו צריכים להבין מה עושים, ובאופן עקרוני זה לא מסובך.

כמה אנשים מתים?

נתחיל באיסוף הנתונים. נתון אחד שצריך לדעת הוא כמה אנשים מתים בכל שנה. זה לא קשה, לפחות במדינה מסודרת שבה נאספים נתונים כאלה באופן מסודר וקבוע. נתוני תמותה נאספים בדרך כלל במשך שנים רבות. הלשכה המרכזית לסטטיסטיקה מפרסמת בכל חמש שנים לוחות תמותה המבוססים על הנתונים שנאספו בחמש השנים שקדמו לשנת הפרסום. מייד נעיין באחד הלוחות (קישור לקובץ pdf). הנה קטע מלוחות התמותה של הלשכה המרכזית לסטטיסטיקה, המתייחס לגברים יהודים ואחרים (כלומר – לא ערבים), בין השנים 2011 ל-2015:

 

 

 

 

 

 

 

אני יודע שהסיכוי שלי למות בסופו של דבר הוא 100%. אבל אני בעזרת לוח התמותה יכול לדעת יותר מזה. אני גבר יהודי בן 55, ומהשורה האחרונה של לוח התמותה שבתמונה אני יכול ללמוד כי בהיעדר כל מידע נוסף, הסיכוי כי אמות בשנה הקרובה הוא 0.00425. לחילופין, על פי נתוני הלשכה, מתוך כל 100000 גברים יהודים, 95506 יגיעו לגיל 56, ו-4494 לא יזכו לכך. אני יודע שיש חוסר תיאום בין שני המספרים האלה, וזה נובע מתוך דקויות סטטיסטיות שלא אכנס אליהן כאן[1]. אני גם יכול ללמוד מהלוח כי תוחלת החיים שלי, בהינתן שכבר הגעתי לגילי המופלג, היא 27.6 שנים פלוס מינוס סטיית תקן ואירועים לא צפויים. יש גם סיכוי שאגיע לגיל 100, אך הוא קטן למדי.

לעומת זאת, לגבר ערבי בגיל 55 במדינת ישראל, הסיכוי למות לפני גיל 56 יותר גבוה: 0.00595, ותוחלת החיים שלו נמוכה יותר: נותרו לו, בממוצע, רק עוד 24.9 שנים לחיות.

איזה נתונים צריך כדי לאמוד את סיכוני העישון?

הנתון השני צריך לאפשר לנו לאמוד כמה אנשים מתו מנזקי עישון. זה כבר יותר מסובך. כולם מתים בסוף, גם אלה שמעשנים וגם אלה שלא. אדם יכול לעשן ולמות מסיבה שלא קשורה לעישון (אולי ממחלה זיהומית, אולי מתאונה, ואולי אפילו מסרטן שעישון אינו גורם סיכון שלו – יש סרטנים כאלה). אדם יכול לא לעשן ובכל זאת למות מסרטן הריאות או מחלת לב – כאשר עישון הוא גורם סיכון ידוע לשני המצבים הבריאותיים האלה.[2] ובכל זאת, הנתונים שיש לאסוף הם כמה אנשים מתים, כמה מהם מעשנים, וכמה לא.

במקומות רבים בעולם נערכים מחקרים תצפיתיים ארוכי טווח העוקבים אחרי מהלך החיים של אוכלוסיות, ואוספים נתונים על התנהגויות העשויות להשפיע על מצב הבריאות של הפרטים באוכלוסייה, כגון הרגלי אכילה ועישון. המחקר הידוע ביותר נערך בעיר פראמינגהם במדינת מסצ’וסטס בארצות הברית. החל משנת 1948 נאספים נתונים כאלה על אלפים מתושבי העיר שהסכימו להשתתף במחקר, והוא עוקב כעת אחרי הדור השלישי של התושבים. באתר המחקר תוכלו למצוא מחשבונים שבעזרתם תוכלו לדעת מה הסיכון שלכם ללקות במחלת לב. המחקר הזה הראה כי עישון הוא גורם סיכון משמעותי לסיכוי לחלות במחלת לב.

מחקר אחר, קצת ישן (משנת 1999) שערכו יעקובס ועמיתיו, עקב אחרי אוכלוסייה של כ-12000 איש בשבע מדינות במשך 25 שנים. המחקר אסף נתוני תמותה מכל סיבה שהיא, וכמובן נתונים נוספים. אחת המסקנות של המחקר הזה הייתה כי הסיכון למות של מעשנים המעשנים עד 10 סיגריות ביום גבוה פי 1.3 מהסיכון של לא מעשנים, והסיכון למות של אלה המעשנים יותר מ-10 סיגריות ליום גבוה פי 1.8 מאלה של הלא מעשנים. ללא הסבר המספרים האלה נראים תמוהים. מה זאת אומרת שהסיכון למות גבוה פי 1.8? כולם מתים בסוף. הסיכון למות הוא 100% לכולם. לא? לא. הסיכוי שאדם ימות בסופו של דבר הוא אכן 100%. הסיכון הוא לא סיכוי. אז בואו נעשה סדר.

איך מודדים את הסיכון

הסיכון נגזר מהסיכוי למות (או לחוות אירוע אחר כלשהו, כמו התקף לב למשל) במשך יחידת זמן מוגדרת, ומתייחס לנקודה ספציפית בזמן (או לתקופת זמן קצרה מאוד). אל תיבהלו, אבל אני אומר לכם שהסיכון הוא הנגזרת של ההסתברות המותנה למות (אתם יכולים לעבור הלאה בלי חשש). הסיכוי, לעומת זאת, מתייחס לתקופות זמן ארוכות יותר.

אני לא אכנס כאן להגדרה המתמטית המדוייקת של הסיכון. אומר רק שאם יודעים את הסיכוי למות במשך תקופת מסויימת, נניח שנה, אפשר לחשב מכך את הסיכון למות במשך אותה תקופת זמן. גם ההיפך נכון: אם יודעים את הסיכון אז יודעים את הסיכוי. כמו כן, באופן לא מפתיע, אם הסיכוי שלך למות בשנה הקרובה גבוה יותר, אז גם הסיכון שלך גבוה יותר.

ואם אפשר לעשות את האבחנה הזו בין יהודים וערבים, ובין גברים לנשים, בוודאי שאפשר לחשב את הסיכון של המעשנים ולהשוות אותו לסיכון של הלא מעשנים.

הכלי הסטטיסטי שמאפשר לבצע את התרגילים האלה הוא מודל הסיכונים הפרופורציונליים שפותח בשנת 1972 על ידי הסטטיסטיקאי הבריטי סיר דויד קוקס, וידוע גם בשם מודל קוקס. קשה להמעיט בחשיבות של המודל הזה. המאמר שבו הוצג המודל נמנה עם 100 המאמרים המדעיים המצוטטים ביותר בכל הזמנים – לא מאמרים בסטטיסטיקה, אלא כל המאמרים המדעיים.  המודל מאפשר לזהות גורמי סיכון  להתרחשות אירועים כגון מוות, ולמדוד מה פוטנציאל הסכנה בכל גורם סיכון כזה. בנוסף לכך, קוקס הציג במאמר שלו חידושים סטטיסטיים נוספים שהשפיעו רבות גם על תחומים אחרים בסטטיסטיקה. אילו היה פרס נובל לסטטיסטיקה, סיר דויד קוקס היה זוכה בו ללא צל של ספק. סיר קוקס אכן זכה כמעט בכל פרס אפשרי בתחום הסטטיסטיקה. המודל שלו בפירוש מאפשר הצלת חיים. לדעתי סיר קוקס ראוי לזכייה בפרס נובל לרפואה.

להלן נוסחת המודל. מייד אסביר הכל. ניתן לראות כי זהו למעשה מודל רגרסיה.

 

 

נתחיל בצד שמאל. שם מופיע הסיכון כפי שהוא מושפע מגורמי הסיכון – אותו אנחנו רוצים לאמוד. הוא מסומן באות למבדה – האות היוונית שדומה לאות ג. בצד ימין יש מכפלה של שני חלקים. חלק אחד מתאר את הסיכון הבסיסי – כאשר אין שום אינפורמציה. הוא מסומן בלמבדה אפס טי. הסיכון הבסיסי נקבע רק על פי נתוני התמותה. לכל אדם במדגם נתון האם הוא מת, אם כן, מתי, ואם לא, כמה שנים הוא חי עד למועד שבו הוחלט להפסיק את המעקב ולהזין את הנתונים למודל. החלק השני מכיל את גורמי הסיכון האפשריים, כגון גיל, מין, הרגלי אכילה, וגם כמובן משתנה המציין האם האדם שבמדגם מעשן או לא. גורמי הסיכון מסומנים באיקסים. לכל X יש מקדם שמסומן באות ביתא. אם ביתא שונה באופן משמעותי מאפס זה אומר שלמשתנה X יש השפעה משמעותית על הסיכון. אם ביתא חיובי זה אומר שהסיכון גדל ככל ש-X גדל, ואם ביתא שלילי זה אומר של-X יש דווקא השפעה חיובית. רמת הסיכון עולה (או יורדת) באופן פרופורציוני לערכו של .X[3] מכאן נובע שם המודל – מודל הסיכונים הפרופורציוניים. לאחר שאומדים את הפרמטרים של המודל אפשר, באופן תיאורטי, לחשב את הסיכון לאדם מעשן ולאדם לא מעשן.[4] בפועל, המודל מספק ישירות אומדן ליחס שבין הסיכונים, ה-hazard ratio. היחס הזה מתבטא במקדם הביתא של משתנה העישון.

למודל יש כמובן גם הנחות. החשובה שביניהן היא ההנחה כי יחס הסיכונים נשאר קבוע לאורך כל תקופת המעקב. זו הנחה חזקה, ובדרך כלל היא נכונה, וגם אם יש סטייה לא גדולה מההנחה הזו המודל מספיק עמיד (robust) כדי לספק אומדן טוב של הסיכון. יש הרחבות למודל שבהן מחליפים את ההנחה הזו בהנחה יותר גמישה אם יש צורך. אחד המודלים הידועים שמרחיבים את מודל קוקס פותח על יד שילה בירד.

איך מתרגמים את הנתונים למספרים

עכשיו נוכל לעשות את החישובים.

יש לנו את ההסתברויות למות בכל גיל מלוחות התמותה. יש לנו את גם יחס הסיכונים שהוא כזכור היחס בין הסיכון למות של אנשים המעשנים יותר מ-10 סיגריות ביום ובין הסיכון של לא מעשנים. זכרו כי זהו יחס הסיכונים לנקודה ספציפית בזמן. מתוך יחס הסיכונים אפשר לחשב את  יחס הסיכויים: היחס בין ההסתברויות למות במשך תקופת זמן מוגדרת, שנה למשל. בשביל זה יש נוסחה. אני אחסוך לכם אותה. יש בה אינטגרלים ואקספוננטים, וזה בדרך כלל לא טוב לבריאות. אם אתם ממש רוצים  אז אתם יכולים לקרוא כאן, למשל, אבל זה על אחריותכם (קישור לקובץ  pdf). אני חוסך את זה גם לעצמי, ואשתמש בנתון מתוך מאמר אחר מאת מהטה ופרסטון משנת 2012. לפי הנתונים במאמר הזה, יחס הסיכויים למוות בתקופת זמן של שנה, בין גברים מעשנים וגברים לא מעשנים הוא בערך 2.3 (לקחתי את הגבול התחתון של רווח הסמך, כדי לקבל הערכה שמרנית), לאחר תקנון לגיל, וזאת בארצות הברית, בשנים 1987 עד 2006.

אנחנו צריכים עוד נתון אחד והוא שיעור המעשנים באוכלוסייה. לצורך הדוגמה אשתמש בנתונים של משרד הבריאות משנת 2017, לפיהם כ-30% מהגברים מעל גיל 21 הינם מעשנים..

כשיש לנו את כל הנתונים מה שנשאר זה קצת אלגברה של בית ספר תיכון.[5]

נניח שהסיכוי של מעשן בן 55 למות לפני גיל 56 הוא X, והסיכוי של לא מעשן הוא Y. לפני הנתון של מהטה ופרסטון, X גדול פי 2.3 מ-Y, כלומר X=2.3Y. זה נותן לנו משוואה אחת המקשרת בין X ל-Y.

את המשוואה השנייה נגזור מתוך מה שידוע בשם נוסחת ההסתברות השלמה.  ניתן להציג את החישוב בצורת עץ הסתברויות:

 

 

 

 

 

 

 

 

 

מהי ההסתברות של גבר בן 55 למות? ההסתברות הזו שווה להסתברות שלו למות אם הוא מעשן שהיא כאמור X כפול ההסתברות שהוא מעשן, שהיא 30%, ולכך יש להוסיף את ההסתברות שלו למות אם הוא לא מעשן, Y, כפול ההסתברות שהוא לא מעשן, שהיא 70%.  כל זה צריך להיות שווה ל-0.00425, כלומר 0.3x+0.7y=0.00425.

עכשיו יש לנו שתי משוואות בשני נעלמים ואפשר לפתור אותן. הפתרון הוא ש-X, ההסתברות שגבר יהודי מעשן בן 55 ימות לפני שיגיע לגיל 56 – שווה ל-0.00703237, ואילו Y, ההסתברות שגבר יהודי בן 55 שאינו מעשן ימות לפני שיגיע לגיל 56 היא הרבה יותר נמוכה: 0.00305755.

כזכור, על פי לוח התמותה, ההסתברות שגבר בן 55 ימות לפני שיגיע לגיל 56 היא 0.00425. זה אומר שאם יש לנו 100000 גברים כאלה, אז בממוצע ימותו במהלך השנה 425 מהם. אם לעישון אין השפעה על ההסתברות למות, אז 30% מהמתים יהיו מעשנים: בערך 128 איש.

אבל אנחנו יודעים שההסתברות למות שונה למעשנים ולא מעשנים.

בין 100000 הגברים יש 30000 מעשנים, ולכל אחד מהם הסתברות למות השווה כאמור ל- 0.00703237. זה אומר שמתוכם ימותו 210 איש – 82 איש יותר ממה שהיה צריך להיות אילו לעישון לא הייתה השפעה. 82 האנשים האלה מתו לכן בגלל שהיו מעשנים.

כך אפשר לערוך את החישוב לכל מין, לכל גיל, ולכל קבוצת אוכלוסייה למעשה. אם עושים את החשבון עם כל הנתונים המדוייקים (שלא היו בידיי), אז מגיעים ל-8000 מחברים את תוצאות כל החישובים ומגיעים למספר הכולל.

מה בקשר לעישון פאסיבי

העקרון הוא אותו עיקרון, אם כי היישום יותר מסובך. אני חייב להודות שאני לא יודע באיזה שיטה משתמשים כדי לאמוד את מספר הנפגעים מעישון פאסיבי.

בגדול יש שתי אפשרויות: להגדיר באופן כלשהו משתנה המציין אם אדם נחשף לעישון פאסיבי או לא נחשף, ואז החישוב הוא כפי שנעשה קודם. אפשרות שניה היא להגדיר את רמת החשיפה לעישון פאסיבי כמשתנה כמותי ואז יחס הסיכונים פרופורציונאלי לרמת החשיפה. ברמה העקרונית החישוב נשאר אותו חישוב, אלא שכאן מדובר במשתנה רציף ולכן הפירוק להסתברויות לפי רמת החשיפה מסובך יותר.

כמה מילים בנימה אישית

וכאן אני רוצה לומר כמה מילים אישיות.

אני חושב שהנתון כי בכל שנה מתים בישראל 8000 איש מנזקי עישון הוא מזעזע. אם מחר תפרוץ חלילה מלחמה וימותו בה 8000 איש העם יצא לרחובות. אם השנה ייהרגו 8000 איש בתאונות דרכים, שר התחבורה והשר לביטחון פנים לא יוכלו להתחמק מאחריות. 8000 מתים בשנה פירושם יותר מ-20 מתים כל יום. אם חלילה יתרחש פיגוע וייהרגו בו 20 איש, אף אחד לא יחכה שהמספר יצטבר ל-8000 לפני שיידרשו לעשות משהו, ובצדק.

כמו שאמר סטאלין, מוות אחד הוא טרגדיה אבל 8000 מתים הם כנראה רק סטטיסטיקה. לסטטיסטיקה הזו אחראים המנהיגים שלנו ומקבלי ההחלטות. בשנת 2011 הוכרזה תכנית לאומית למלחמה בעישון ובנזקיו. בפועל לא קרה כמעט כלום. הגיע הזמן לתכנית חדשה, והפעם זו צריכה להיות תכנית חירום לאומית למלחמה בעישון. עכשיו.

 

 

 


הערות
  1. אתם מוזמנים לקרוא את דברי ההסבר בקובץ לוחות התמותה []
  2. נשאלת כמובן השאלה איך יודעים שאלה גורמי סיכון, והתשובה תתברר מייד []
  3. באופן יותר מדוייק: ההשפעה היא פרופורציונית לגבי הלוג של יחס הסיכונים []
  4. את זה עושים על ידי כך שקובעים ש-X הוא משתנה שמקבל שני ערכים: 0 אם האדם לא מעשן, 1 אם הוא כן מעשן. כאשר X שווה ל-1 נוסף הערך ביתא לסכום המשוקלל של גורמי הסיכון []
  5.  אני יודע שאני עושה פה סלט: נתונים מארצות הברית מסוף המאה העשרים ותחילת המאה העשרים ואחת, ונתונים מישראל. הכל נעשה לצורך הדגמה. אל תסיקו מסקנות מהמספרים שתראו בהמשך. []

איך מחשבים את תאריכי התוקף של התרופות

לכל תרופה יש תאריך תוקף, שלאחריו השימוש בה אינו מומלץ. הסיבה לכך היא שבמשך הזמן שעובר מאז הייצור החומר הפעיל שבתרופה[1] עובר תהליכי פירוק, כך שתיאורטית קיימת נקודת זמן בה רמת החומר הפעיל כבר לא תספיק לפעולה יעילה של התרופה.
ברשימה זו אסקור את המשמעות של תאריך התוקף ותהליכי הפירוק, את האינטרסים של בעלי העניין, ואת הדרך הסטטיסטית בה אומדים את משך חיי המדף של התרופה.

מה המשמעות של תאריך התוקף?

המונח המקובל לתיאור המצב בו התרופה ראויה לשימוש הוא “יציבות”. בהנחיות ה-FDA נאמר כי משך חיי המדף של התרופה הוא הזמן המקסימלי בו הערכים של מאפייני היציבות מקיימים את הקריטריונים ליציבות. זוהי הגדרה מעגלית במקצת, ולכן אנסה להסביר באמצעות דוגמה.
אחד המדדים המקובלים לפיהם מודדים את היות התרופה מיועדת לשימוש, הוא אחוז החומר הפעיל. כאשר התרופה יוצאת מקו הייצור, אחוז החומר הפעיל מוגדר כ-100%. במשך הזמן יש, כאמור תהליכי פירוק, ואחוז החומר הפעיל יכול לרדת ל-99%, או 98% וכולי. אם נטען כי התרופה יעילה כל עוד אחוז החומר הפעיל גבוה מ-90%, ובדרך כלשהו מעריכים כי משך הזמן שלוקח עד שאחוז החומר הפעיל יורד מ-90% הוא שנתיים, אז משך חיי המדף של התרופה יכול להיות לכל היותר שנתיים מתאריך הייצור.
הסבר גרפי: בגרף שלפניכם ציר ה-x מייצג את הזמן, וציר ה-y מציין את ערכו מדד היציבות, במקרה זה מדד שלילי (ככל שהוא גבוה יותר התרופה פחות טובה), למשל, שיעור הזיהומים (impurity). הקו הירוק מציין את השינוי במדד לאורך הזמן, והקו האדום את הקריטריון, הקו שאם המדד עולה מעליו התרופה מוגדרת כלא ראויה לשימוש. הנקודה בזמן בה הקו הירוק חוצה את הקו האדום היא משך חיי המדף של תרופה.

 

 

 

 

 

 

 

כמובן שיש עוד מדדים שצריך להתחשב בהם, ומשך חיי המדף נקבע לפי המקרה הגרוע ביותר. לדוגמה, אם בתרופה שלנו מדד אחר חורג מהקריטריונים שלו אחרי שנה, אז משך חיי המדף יוגדר כשנה, למרות שאחוז החומר הפעיל הינו ברמה ראויה למשך שנתיים.
כאן עולות שתי שאלות. שאלה אחת היא כיצד קובעים הקריטריון לפיו התרופה ראויה לשימוש כל עוד אחוז החומר הפעיל גבוה מ-90%. ההצדקות לקריטריונים אלה מבוססות בדרך כלל על מודלים כימיים או ביולוגיים ועל ידי ניסויים בחיות.
שאלה שניה היא כיצד מעריכים כי אחוז החומר הפעיל הינו ברמה סבירה (acceptable) כעבור זמן מה לאחר הייצור. למשל, כיצד יודעים כי אחרי שנתיים אחוז החומר הפעיל יורד אל מתחת לקו של 90 האחוזים. כאן הסטטיסטיקה נכנסת לפעולה.

מהם האינטרסים של בעליי העניין?

יש למעשה שלושה בעלי אינטרסים: הצרכנים/החולים, חברות התרופות, והרשות הרגולטורית.
לרשות הרגולטורית, לחברות התרופות ולצרכנים יש אינטרס משותף. שלושתם רוצים כי הצרכן יוכל לסמוך על כך שהתרופה תהיה יעילה ובטוחה לשימוש כל עוד תאריך התוקף לא פג. כאן אולי צריך להדגיש כי גם חברת התרופות מעוניינת בכך: מי רוצה שהלקוח שלו ישתמש במוצר פגום ועקב כך ייגרם לו נזק?
בעניין משך חיי המדף/תאריך התוקף של התרופה הדברים קצת יותר מסובכים.
הרשויות הרגולטוריות (בעיקר ה-FDA) רוצות ללכת על בטוח, ולכן מגבילות באופן מעשי את משך חיי המדף לשלוש שנים (אם כי לפי ההנחיות של ה-FDA יש אפשרות תיאורטית לקביעה של משך חיי מדף ארוכים יותר). כמו כן, הרשויות מכתיבות אומדנים שמרניים למשך חיי המדף. בכל שלב בתאריך קביעת משך חיי המדף, משתמשים בתרחיש הגרוע ביותר (worst case scenario) כבסיס להמשך לשלב הבא. זהירות יתר זו גורמת לכך שבדרך כלל משך חיי המדף הרשמי נמוך ממשך חיי המדף האמיתיים.
הצרכנים מעוניינים בחיי מדף ארוכים. זה נכון בעיקר כאשר מדובר בתרופות ללא מרשם לשימוש מזדמן, פאראצטמול למשל. אם אתה קונה את הפאראצטמול כדי שיהיה לך משכך כאבים זמין למקרה של כאב ראש מדי פעם, אתה לא מעוניין שתאריך התוקף יעבור ותצטרך לזרוק לפח את המלאי שנשאר לך. מצד שני, ייתכן כי הצרכנים יפקפקו בתאריכי תוקף רחוקים במיוחד.
גם חברות התרופות, בניגוד למה שמקובל לחשוב, מעוניינות בתאריכי תוקף ארוכים ככל האפשר. הסיבה לכך היא שתאריכי תוקף ארוכים יותר מאפשרים יותר גמישות בתהליכי הייצור והלוגיסטיקה, ומכך נגזר רווח גדול יותר.
קו ייצור טיפוסי משמש לייצור של סוגים שונים של תרופות. לאחר שמייצרים אצווה של תרופה א, יש לנקות את קו הייצור לפני שעוברים לייצור של תרופה ב. זה יכול לקחת יום או יומיים, שבהם הייצור מושבת. אם תאריך התוקף של התרופות הוא נמוך, שנה למשל, אצוות הייצור יהיו קטנות, כי צריך לשנע את התרופות לנקודות המכירה ולדאוג כי הן יימכרו לפני סוף השנה. מכיוון שבמצב כזה נאלצים לייצר אצוות קטנות, פירוש הדבר הוא שיש צורך במספר יותר גדול של תהליכי ניקוי, כלומר יש יותר ימים בהם קו הייצור מושבת. וכפי שציינתי, לוחות הזמנים לשינוע התרופה לנקודות המכירה והמכירה עצמה יהיו לחוצים יותר. חיי מדף ארוכים מאפשרים ייצור יעיל יותר.

איך קובעים את משך חיי המדף?

התשובה פשוטה להפליא: מניחים את התרופה על המדף ורואים מה קורה לה. הפרטים, לעומת זאת, לא כל כך פשוטים.
קודם כל, ברור כי לא ניתן לצפות בכל התרופות שיוצרו, אז לוקחים מדגם של אצוות ייצור. גודל המדגם המקובל הוא 3 אצוות. זה מדגם קטן, לכן השונות בו תהיה גבוהה. כפי שנראה מייד, שונות גבוהה מובילה לאומדנים שמרניים יותר של משך חיי המדף, כלומר, האומדן שיחושב למשך חיי המדף יהיה בדרך כלל קטן ממשך חיי המדף בפועל.
מכל אצווה דוגמים מלאי מספיק של תרופות/טבליות שיאפשר את המדידה של כל הפרמטרים במשך תקופת התצפית.
כעת מאכסנים את הטבליות שנדגמו בתנאי אחזקה שונים. אם מדובר למשל בטבלייה שאמורה להיות מוחזקת בטמפרטורת החדר, אז מאכסנים חלק מהמדגם בטמפרטורת החדר – 25 מעלות צלזיוס ו-60 אחוזי לחות. חלק אחר מהמדגם מאוכסן בתנאים פחות נוחים: 30 מעלות צלזיוס ו-65 אחוזי לחות. החלק השלישי מאוכסן בתנאים קשים/מואצים: 40 מעלות צלזיוס ו-75 אחוזי לחות.
הציפיה היא כי הטבליות המאוכסנות בתנאים של 30 עד 35 מעלות יחזיקו מעמד לאורך כל חיי המדף המבוקשים, כלומר אם החברה רוצה לקבוע חיי מדף של שלוש שנים, הן צריכות להחזיק מעמד בתנאים האלה במשך שלוש שנים. כן מצפים כי התרופות המאוכסנות בתנאים המואצים יחזיקו מעמד במשך חצי שנה.
מודדים את ערכי הפרמטרים של הטבליות (כגון אחוז חומר פעיל ורמת הזיהומים) מייד לאחר הייצור. זה בדרך כלל גורם להשמדתן. לאחר מכן, בתקופות זמן שנקבעו מראש מוציאים עוד טבליות מהאחסון, ומודדים את ערכי הפרמטרים בנקודת זמן זו. לאחר שנאספו כל הנתונים אפשר לאמוד את הפרמטרים של תהליך הפירוק, למשל על ידי רגרסיה לינארית. הנה דוגמה פשטנית:

 

 

 

 

 

 

הנקודות הכחולות בגרף הן הערכים שנמדדו לאורך תקופת זמן של 24 חודשים עבור אצווה בודדת. הקו הירוק הוא קו הרגרסיה: המודל התיאורטי שמתאר את תהליך הפירוק. הקווים האדומים הם רווחי הסמך של קו הרגרסיה. רווחי הסמך רחוקים יותר מקו הרגרסיה ככל שהשונות במדגם גדולה יותר. אם מדובר במדד שקטן עם הזמן, למשל אחוז החומר הפעיל, משך חיי המדף ייקבע על ידי הנקודה בזמן בה הקו האדום התחתון יורד אל מתחת לקריטריון. זה עוד אמצעי זהירות המוביל לכך שמשך חיי המדף המדווח על אריזות התרופות נמוך בדרך כלל ממשך חיי המדף האמיתיים.
יש כמובן שלוש אצוות, והנתונים מכל אצווה מנותחים בנפרד, והתוצאה הרשמית היא התוצאה הגרועה ביותר מבין התוצאות שהתקבלו. במקרים מסויימים מותר לאחד את כל הנתונים מהאצוות ולנתח אותם ביחד. שוב, המקרים בהם מותר לבצע את האיחוד מוכתבים על ידי הרשויות הרגולטוריות, והכלל של התרחיש הגרוע ביותר נשמר.

מה עושים אם תאריך התוקף עבר?

ההמלצה היא לא להשתמש בתרופה שתאריך התוקף שלה עבר, למרות שראינו כי תאריך התוקף המדווח הוא בדרך כלל נמוך יותר מתאריך התוקף האמיתי. יש מספר סיבות לכך. ראשית, תאריך התוקף האמיתי אינו ידוע, וייתכן כי הוא לא גדול בהרבה מתאריך התוקף המדווח. שנית, ייתכן כי התרופה הספציפית שברשותך יוצרה באצווה פחות “טובה”, ותהליכי הפירוק באצווה הזו הינם מהירים יותר. ולבסוף, סביר להניח כי תנאי האכסון של התרופה שלך היו פחות טובים מתנאי האכסון המומלצים. מי שמחליט להשתמש בתרופות שתאריך התוקף שלהן פג (בעקבות כתבות קונספירטיביות על “הסודות השמורים של חברות התרופות” עושה זאת על אחריותו.
עם זאת ארגונים גדולים, כגון צבא ארצות הברית וצה”ל, מחזיקים מחסני חירום בהם נשמרות תרופות למשכי זמן ארוכים יותר מתאריך התוקף המדווח. זה אפשרי אם אכן התרופות מאוכסנות בתנאי האכסון המומלצים, וכמובן שארגונים אלה עורכים בדיקות משל עצמם למעקב אחרי אחוז החומר הפעיל, אחוז הזיהומים וכולי.

לקריאה נוספת


הערות
  1. וגם החומרים הלא פעילים []