חיפוש באתר

קישורים

RSS סטטיסטיקה ברשת

עמודים

קטגוריות

תגיות

מהו גודל המדגם המתאים?

אוכלוסיית ישראל גדולה בערך פי 2 מאוכלוסיית ניו זילנד. כדי לאמוד את מספר התומכים בראש הממשלה בישראל (עם טעות דגימה של כ-3%, וברמת סמך של כ-80%) דרוש מדגם מייצג בגודל של כ-500 איש[1].  מה צריך להיות גודלו של מדגם מייצג בסקר דומה בניו זילנד?

שאלתי את השאלה הזו בסקר שערכתי בטוויטר, ולשמחתי הרבה רוב העונים ענו את התשובה הנכונה: גם בניו זילנד צריך סקר בגודל 500. ברשימה הזו אסביר מדוע זה נכון, וגם מדוע זה לא בהכרח נכון.

סיפור מהעבר: אי שם בתחילת שנות ה-90 לימדתי כמה קורסים של סטטיסטיקה לכלכלנים. שאלתי שאלה דומה לזו באחד המבחנים נתתי. חלק מהסטודנטים טענו כי השאלה לא הייתה הוגנת. אני טענתי שכן, ומייד אסביר מדוע.

השאלה הזו נועדה לבדוק ישירות האם הסטודנט מבין כיצד מחושב גודל המדגם. לכאורה אין בעיה. יש נוסחה (לפחות למקרה הספציפי הזה), מציבים בנוסחה את כל הפרטים הדרושים, ומחשבים. לראיה, בשאלה אחרת התבקשו הנבחנים לחשב גודל מדגם, רוב הסטודנטים ענו נכון על השאלה, ואיש לא טען שהשאלה לא הוגנת.

אבל יש בעיה. יש הבדל בין לדעת לחשב את גודל המדגם ובין להבין כיצד גודל המדגם מחושב. לדעתי ולמיטב זכרוני עמדתי בהרצאות על ההבדל בין שני הדברים, וציינתי כי גודל המדגם לא תלוי בגודל האוכלוסייה, אבל כנראה לא הדגשתי את זה מספיק בקורס הספציפי המדובר. בהמשך הקריירה שלי הקפדתי יותר להדגיש את המשמעות של הנוסחה, ולא רק את השימוש בה (בתקווה שזה עניין מישהו).

בואו ניכנס לפרטים. אנחנו נדבר כאן רק על המקרה הפשוט ביותר, בו רוצים לאמוד פרופורציה באוכלוסייה, כגון שיעור התומכים בראש הממשלה, אחוז הגברים שגובהם מעל 180 ס"מ, או אחוז התומכים בלגליזציה של סמים קלים. העקרונות שאציג נכונים גם למקרים מורכבים יותר.

הדרך הכי קלה (לפחות למרצה שעומד מול סטודנט זועם) להסביר למה צריך את אותו גודל מדגם בישראל ובניו זילנד היא לשלוח אותו לנוסחה, או למחשבון חישוב גודל מדגם שניתן למצוא בקלות באינטרנט. יש כל מיני נתונים שאתם צריכים להציב בנוסחה או להזין למחשבון. גודל האוכלוסייה לא נדרש. סוף הסיפור.

אבל בואו ננסה להבין באופן אינטואיטיבי מה קורה פה. התשובות האפשריות בסקר שערכתי היו 500 – התשובה הנכונה, 250 – תשובה שנועדה לתפוס את אלה שההיגיון שלהם אמר שאם האוכלוסייה קטנה פי 2 אז גם המדגם צריך להיות קטן פי 2. ל-350 הגעתי על ידי חלוקה של 500 בשורש של 2.

מה היה קורה אם התשובה 250 הייתה נכונה? כלומר, מה היה קורה אם גודל המדגם היה פרופורציוני לגודל האוכלוסייה? אז בניו זילנד, עם 4 מיליון תושבים בערך "צריך" מדגם של 250. בארצות הברית, שבה כ-330 מיליון תושבים, צריך מדגם בגודל 20625 (נשמע הגיוני, לא?), בסלובניה שבה כ-2 מיליון תושבים אפשר להסתפק במדגם בגודל 125, באיסלנד שבה 350 אלף תושבים יספיק מדגם של 22 איש, ובקיבוץ אייל, שבו יש לפי ויקיפדיה 485 תושבים, צריך מדגם בגודל 0.03 איש. מה? משהו לא מסתדר פה. מקווה שהתחלתם לחשוד כבר באיסלנד.

מצד שני, יש בעיה אחרת שעולה כאן. איך נוכל לדגום 500 איש בקיבוץ אייל, כאשר אין שם בכלל 500 איש?

התשובה היא שצריך לקרוא את האותיות הקטנות. הנוסחה שמלמדים בקורס מבוא לסטטיסטיקה מניחה שהאוכלוסייה ממנה דוגמים היא אינסופית, או לפחות גדולה מאוד[2] . מה קורה כשהאוכלוסייה לא גדולה? בשביל לדעת את זה צריך להגיע לשנה ג בלימודי הסטטיסטיקה, אז לומדים את הקורס הבסיסי בדגימה. שם דנים בנושא של דגימה מאוכלוסייה סופית. הנוסחה לגודל המדגם במקרה זה כן כוללת בתוכה את גודל האוכלוסייה. נכון שאנחנו תמיד מתייחסים לאוכלוסייה סופית (גם בסין יש מספר סופי של תושבים), אך כאשר מדובר באוכלוסייה גדולה יחסית שתי הנוסחאות נותנות תוצאה דומה. במקרה של ישראל, ניו זילנד, ארצות הברית וסלובניה תתקבל אותה תוצאה גם אם משתמשים בנוסחה לאוכלוסייה אינסופית וגם כאשר משתמשים בנוסחה לאוכלוסייה סופית שלוקחת בחשבון את גודל האוכלוסייה. ההבדל זניח. באיסלנד כבד יש הבדל – אפשר להקטין שם את גודל המדגם ב-1. למעשה אם גודל האוכלוסייה הוא 10000 ומעלה הבדל בין התוצאות של שתי הנוסחאות הוא פחות מאחוז. בקיבוץ אייל כבר חייבים להשתמש בחישוב עבור אוכלוסייה סופית. שם גודל המדגם הדרוש הוא 236.


הערות
  1. המספר המדוייק הוא 457 []
  2. אם תכנסו לקישור לדף בו נמצאת נוסחת גודל המדגם שנתתי קודם, תראו שכותרת הדף היא Estimating a Proportion for a Large Population , וזה כתוב באותיות גדולות []

מה עושים כשיש 180000 משתנים מסבירים?

בקבוצת Machine & Deep learning Israel בפייסבוק מישהו שאל את השאלה הבאה:

 I have a feature matrix of about 4000 samples and 180,000 features. Naturally, I want to reduce its dimensions for applying a machine learning algorithm on the reduced matrix.

  1. How do I handle such a big matrix in python for calculations (pandas, other?)
  2. How can I apply feature selection on such a big matrix and what feature selection methods would you try first?

למעשה יש פה שתי שאלות, הראשונה טכנית במהותה (שימוש בשפת פייתון). אני רוצה להתייחס לשאלה השניה.

ראשית, בואו נבהיר אותה בעברית.

לשואל יש קובץ נתונים, עם 4000 תצפיות. בכל תצפית נתונים ערכים של 180,000 משתנים (features בשפת ה-machine learning). ברור לשואל שיש לו יותר מדי משתנים (חלק מהמשיבים לשאלה ציינו זאת במפורש, ויעצו לשואל לאסוף עוד תצפיות) , והוא שואל איך יוכל לבחור מתוכם קבוצה קטנה יותר של משתנים, כך שמימד הבעיה יקטן. כשכמובן הוא מעוניין לבחור את המשתנים המשמעותיים ביותר לבעיה שלו.

הוא קיבל כמה תשובות, חלקן מעניינות, אם כי לפחות אחת מהן (להפעיל PCA או פרוצדורה דומה) בעייתית בעיניי. אני רוצה להציע כאן היוריסטיקה משלי להתמודדות עם הבעיה.

ראשית, יש לסנן החוצה משתנים עם שונות נמוכה או ללא שונות כלל. לחשב את סטיית התקן של כל משתנה לחוד זה קל יחסית. איזה ערך של סטיית תקן ייחשב לנמוך? כאן יש להפעיל שיקול דעת  (judgement). אפשר למשל לחשב את העשירונים או אפילו את המאונים של 180000 סטיות התקן, ולראות איך ההתפלגות מתנהגת. אפשר להחליט לקחת את העשירון העליון של סטיות התקן, או אולי אפילו את המאיון העליון. ייתכן גם ולא יהיה מזל, ותהיה קבוצה קטנה של משתנים עם סטיות תקן נמוכות, ולאחריהן קפיצת מדרגה, ואז לא יהיה ניתן לסנן הרבה משתנים.

מכאן נעבור לשלב השני בסינון. בואו נניח שאחרי הסינון הראשון נותרו 18000 משתנים. אני מניח כעת כי יש גם משתנה מוסבר כלשהו, Y, ושמעוניינים לבנות מודל פרדיקטיבי עבור Y. בשלב נבנה 18000 מודלים פרדיקטיביים עבור Y, כאשר בכל מודל יש רק משתנה מסביר אחד. מכאן נוכל לחשב את הערך הפרדיקטיבי האינדיבידואלי של כל אחד מ-18000 המשתנים שלנו. נפעיל שיקול דעת דומה לזה שהפעלנו בשלב הקודם, ונישאר עם המשתנים בעלי הערך הפרדיקטיבי האינדיבידואלי הגבוה ביותר. בואו נניח, לצורך העניין, שנשארנו עם 9000 משתנים מסבירים.

השלב הבא הוא לבנות מודל שיכיל כמה משתנים מסבירים. בהנחה שהשואל חילק את קובץ הנתונים שלו לשני חלקים (חלק אחד לצורך פיתוח, והאחר לצורך ולידציה), יש לו 2000 תצפיות, ולכן מספר המשתנים המסבירים צריך להיות נמוך מ-2000 באופן משמעותי, כדי שיהיו לו מספיק דרגות חופש לאמידת הפרמטרים של המודל. נניח שהולכים על מודל עם 500 משתנים מסבירים.

בשלב הראשון בונים מודל הכולל את 500 המשתנים בעלי הערך הפרדיקטיבי הגבוה ביותר. מחשבים את הערך הפרדיקטיבי של המודל.

ייתכן כעת, שעקב אינטראקציות בין משתנים, יהיה מצב בו הכנסת משתנה עם ערך פרדיקטיבי יותר נמוך למודל יעלה בכל זאת את הערך הפרדיקטיבי הכולל של המודל. כאן אני מציע להפעיל פרוצדורה רנדומלית:

1) בחר את אחד המשתנים שבתוך המודל באופן מקרי.

2) בחר אחד מהמשתנים שלא נכנסו למודל באופן מקרי.

3) הוצא מהמודל את המשתנה שבחרת בשלב (1) והכנס במקומו למודל את המשתנה שבחרת בשלב (2).

4) חשב את הערך הפרדיקטיבי של המודל החדש.

5) אם הערך הפרדיקטיבי של המודל החדש גבוה יותר מהערך הפרדיקטיבי של המודל הישן, השאר עם המודל החדש. אחרת חזור למודל הישן.

6) חזור לשלב (1).

את הפרוצדורה הזאת יש להריץ מספר גדול של פעמים. כמה פעמים בדיוק? זה שוב עניין של שיקול דעת.

לאחר שהתכנסנו למודל כלשהו עם 500 משתנים, נוכל להפעיל עליו את אחת השיטות המקובלות של variable/feature selection, למשל LASSO regression.

כעת, אם עדיין יש צורך, אפשר לקחת משתנים המתארים משתנים דומים או קרובים זה לזה (נניח הטמפרטורה בשעה 10 בבוקר והטמפרטורה בשעה 12 בצהריים), ולהחליף אותם במשתנה שירכז בתוכו את רובה של השונות במשתנים אלה, על ידי הפעלת PCA למשל.

תהליך ארוך אך אפשרי. חשוב לציין שזוהי היוריסטיקה בלבד, ואין לי הוכחה מתמטית לכך שההיוריסטיקה עובדת ומגיעה למודל סביר. כל מה שאני יכול לומר הוא שהתמודדתי בעזרתה עם בעיה הרבה יותר גדולה. התחלנו עם 1000000 משתנים מסבירים והגענו בסוף למודל עם 13 משתנים, בעל ערך פרדיקטיבי של 70%.

בהצלחה!

איך להמר (אם אתה מוכרח)

איך להמר (אם אתה מוכרח)

אתם חייבים 100 אלף דולר לשוק האפור, אבל יש לכם רק 50 אלף, וצריך לשלם בערב. זה לא משנה אם יהיו לכם 50 אלף דולר, או 90 אלף, או 99,999. כל סכום קטן מ-100 אלף יגרום לתוצאות הרות אסון. הסיכוי היחיד שלכם נמצא בקזינו. אתם ניגשים לשולחן הרולטה, שם אפשר להמר על אדום-שחור. אם הימרתם בדולר אחד על אדום, והתוצאה היא אדום, תקבלו בחזרה את הדולר שלכם ודולר אחד נוסף. אם התוצאה אינה אדום[1] הפסדתם את הדולר. יש לציין כי הסתברות הזכיה כאשר מהמרים על אדום היא קצת פחות מ-50%. מה הכי כדאי לעשות? מהי האסטרטגיה שתביא למקסימום את ההסתברות שתצאו מהקזינו ובכיסכם 100 אלף דולר?

שאלה דומה לזו הוצגה בעמוד הראשון של הספר הקלאסי How to gamble if you must מאת Lester E. Dubins, ‎Leonard J. Savage, andb ‎William Sudderth. כותרת המשנה של הספר היא Inequalities for Stochastic Processes, ומעידה על כך שזהו בהחלט ספר מתמטי. ההוכחה לתשובה שמייד אציג נמצאת בפרק החמישי של הספר, למי שמתעניין. כאן אנסה לתת הסבר אינטואיטיבי לתשובה.

אבל לפני כן קצת שעשועים. בסקר שערכתי בטוויטר השתתפו 46 צייצנים. הדיעות התחלקו פחות או יותר שווה בשווה בין ארבע התשובות האפשריות שהוצעו:

לפני שנדון בתשובות קצת היסטוריה, על קצה המזלג. משחקי הימורים היו נפוצים כבר בזמנים קדומים, ויש תיעוד שלהם בכל התרבויות העתיקות. מחקרים אודות הימורים ומשחקי מזל שערכו מלומדים כקרדנו במאה ה-16, כריסטיאן הויגנס במאה ה-17, ואברהם דה-מואבר ויעקב ברנולי במאה ה-18, ואחרים, הניחו את היסודות לתורת ההסתברות. למעשה, הפתרון שאציג מייד נובע מעבודה של דה-מואבר משנת 1711.

ועוד אנקדוטה (אולי משעשעת): בראשית ימיה, עמדה חברת FedEx בפני משבר. היה עליה לשלם חוב של 24,000 דולר, כשבקופתה היו 5000 דולר בלבד. יו"ר החברה ומייסדה, נטל את הכסף שבקופה, טס ללאס וגאס, הימר בשולחן הבלאק ג'ק וזכה ב-27,000 דולר. כך ניצלה החברה, והשאר, כמו שאומרים, היסטוריה. תודה לשי אלקין שהסב את תשומת ליבי לסיפור.

למתעניינים בהיסטוריה של חקר ההימורים והנחת יסודות תורת ההסתברות, אמליץ לקרוא את הספר נגד האלים מאת פיטר ברנשטיין, או את הספר הקלאסי
Games, Gods and Gambling מאת פלורנס נייטיגייל דייויד[2] .

ועכשיו לתשובות.

תשובה אפשרית אחת היא שלא משנה מה עושים כי ממילא נפסיד הכל. זה נכון. ההימור נוטה לטובת הקזינו. ההסתברות לזכיה ברולטה בהימור על אדום (או על שחור) היא 18/38, בערך 47%. מי שיהמר לאורך זמן יצבור אט אט הפסדים, ומי שימשיך להמר עוד ועוד יפסיד בסופו של דבר את כל כספו.  את זה הוכיח כריסטיאן הויגנס. מי שענה את התשובה הזו בסקר צדק.

אבל חדי העין ישימו לב כי השאלה כפי שנוסחה כאן שונה מעט מהניסוח בטוויטר, גם בגלל מגבלת התוים בטוויטר ואולי גם בגלל חוסר דיוק מצידי. בואו נדון באסטרטגיה שתביא למקסימום את ההסתברות לצאת מהקזינו עם 100 דולר, כאשר מגיעים אליו עם 50 אלף דולר. כאן בגדול יש שתי אפשרויות. אפשרות אחת היא להמר מייד על כל הסכום, בתקוה שתזכה בהימור אדום-שחור וכספך יוכפל. ההסתברות לכך היא, כאמור, בערך 47%.

מה קורה אם מהמרים כל פעם על חלק מהסכום? בואו ניקח לדוגמא את האסטרטגיה הבאה: להמר על 25 אלף דולר, לקוות לזכות ועל ידי כך להגדיל את הונך ל-75 אלף דולר, ואחר כך להמר שוב על 25 אלף דולר, כאשר זכיה תביא אותך אל הסכום הנכסף של 100 אלף דולר. במקרה הטוב ביותר תגיע למטרה על ידי שתי זכיות רצופות של 25 אלף דולר כל אחת. ההסתברות לכך היא 0.47 כפול 0.47[3] , כלומר בערך 22.4%.

יש כמובן אפשרות שתפסיד בהימור הראשון את 25 אלפי הדולרים עליהם הימרת. עכשיו יהיה עליך להכפיל את הונך פי 4, וזה ידרוש שוב לפחות שתי זכיות רצופות[4] , וההסתברות לכך היא שוב כ-22.4%.

אם מהמרים על סכומים קטנים יותר, יש צורך ביותר זכיות, וההסתברות להגיע ל-100 אלף דולר צונחת בהתאם.

זו האינטואיציה שעומדת מאחורי הקביעה כי האסטרטגיה האופטימלית היא להמר מייד על כל הסכום בתקווה להכפילו. ברנולי ודה-מואבר הבינו זאת כבר בראשית המאה ה-18. הוכחות מתמטיות מלאות לטענות קרובות הופיעו בתחילת המאה ה-20.

רק רגע, יש עוד אפשרות: לעשות משהו אחר. אפשר להמר בשיטת ההכפלות, הידועה גם בשם  שיטת המרטינגייל.

הנה הרעיון: אתה מתחיל בהימור אדום שחור על דולר. אם זכית – קיבלת את הדולר שלך בחזרה ועוד דולר אחד כרווח. אם הפסדת, לא נורא. המר כעת על שני דולר. אם זכית, אתה מקבל את שני הדולרים שלך בחזרה, ועוד שני דולרים כרווח, בסך בכל ארבעה דולרים. אבל הימרת רק על שלושה דולרים! מכאן שהרווחת דולר.

ומה קורה אם הפסדת גם בהימור השני? אין בעיה. הכפל את סכום ההימור והמר כעת על ארבעה דולר. אם זכית, תקבל שמונה דולר, אבל הימרת רק על שבעה דולר (1+2+4). הרווחת דולר.

ומה אם הפסדת בהימור על ארבעת הדולרים? אין בעיה. הכפל את סכום ההימור ל-8 דולר. אם תזכה תקבל בחזרה 16 דולר, כשהימרת רק על 15 דולר – כלומר שוב הרווחת דולר.

ומה יקרה אם הפסדת בהימור על שמונת הדולרים? אולי עדיין אין בעיה, אבל בקרוב תהיה לך בעיה.

קודם כל נתייחס לבעיה הספציפית שלנו – להגיע מ-50 אלף דולר ל-100 אלף דולר. בשיטה הזו זה ייקח קצת זמן, ותצטרך לזכות בהרבה הימורים בדרך.

כמובן, אם עומד לרשותך סכום כסף בלתי מוגבל, השיטה הזו תוביל אותך לזכיה בהסתברות 1. אבל, הסכום שעומר לרשותך[5] מוגבל, וייתכן מאוד שתגיע למצב בו אין בידיך מספיק כסף כדי להכפיל את ההימור. למעשה, אפשר להוכיח כי אם תהמר בשיטה זו לאורך זמן, תגיע למצב בו אין בידיך די כסף כדי להכפיל את ההימור בהסתברות 1.

שלישית, ברוב בתי הקזינו יש הגבלה על גובה ההימור. שיטת ההכפלות תביא אותך בסופו של דבר אל המחסום הזה ואז לא תוכל למשיך ולהכפיל את ההימור גם אם יש בכיסך את הסכום הדרוש.

באופן אישי, אם היה לי קזינו, לא הייתי מתנגד לכך שיהמרו נגדי בשיטת ההכפלה. אדרבא. אמנם מדי פעם אפסיד דולר, אך ההפסד הזה יכוסה על ידי ההפסדים של כל המכפילים שיגיעו לגבול ההימור שלהם, והפסדים אלה יהיו יותר נפוצים ויותר גדולים מדולר אחד.

אז אם אתם רוצים להמר בשביל הכיף – סבבה. אם אתם רוצים להרוויח כסף מהימורים, כדאי שיהיה לכם קזינו. והכי חשוב, אל תסתבכו עם השוק האפור.


הערות
  1. יש עוד שתי אפשרויות – שחור וירוק []
  2. שאין לבלבל בינה ובין פלורנס נייטינגייל []
  3. בהנחה הסבירה לגמרי שאין תלות בין ההימורים []
  4. להמר על 25, לזכות, ואז להמר על 50 ושוב לזכות []
  5. ולרשות כל אחד, בעצם []

האם כל תוצאה מובהקת היא משמעותית (ולהיפך)?

בכל מחקר כמותי בו נערך ניתוח סטטיסטי של הנתונים, מגיע הרגע הנכסף בו מחושב ה-P-value הנכסף. האם הוא קטן מ-0.05? שואל החוקר את עצמו בהתרגשות. אם כן – הידד! אפשר לפרסם את המאמר, או לרוץ ל-FDA להגיש לאישור תרופה חדשה, או להכניס מוצר חדש ל-production.

אבל, לפני שרצים, יש שאלה נוספת שצריך לשאול: האם התוצאה משמעותית?

נניח שערכנו ניסוי בו השתתפו 1000 איש, מחציתם נשים ומחציתם גברים. ערכנו לכל אחד ואחת מנבדקים מבחן IQ. התברר כי ה-IQ הממוצע של הנשים הוא 100, בעוד שה-IQ הממוצע של הגברים הוא 99. התוצאה מובהקת, עם פי-ואליו של 0.0016. [1] . לפני שתרוצו לפרסם מאמר סנסציוני בכתב העת המדעי החביב עליכם[2] ראוי שתעצרו ותשאלו את עצמכם: אז מה? ההבדל הוא כל כך קטן, האם יש לו משמעות? אם אתם חושבים שלהבדל יש משמעות, עליכם לנמק זאת.

בואו ניקח דוגמה קצת יותר מציאותית. מדען בילה ימים ולילות במעבדה, ופיתח תרופה חדשה לטיפול בטרשת נפוצה  התקפית[3]. התרופה מקטינה את תדירות ההתקפים ב-10%. הוא רושם פטנט, ומנסה למכור את התרופה לחברת תרופות. הסטטיסטיקאי של חברת התרופות יכול בקלות לתכנן ניסוי קליני, שיזהה את האפקט של התרופה בעוצמה של 90%[4] או אפילו 95% או 99%. האם החברה תקנה את התרופה ותפתח אותה? לא ולא. יש כבר תרופות לטיפול בטרשת נפוצה התקפית שמקטינות את תדירות ההתקפים ב-30, 40, ואפילו ב-50%. במצב זה, לתרופה עם אפקט של 10% אין משמעות, לא קלינית ולא מסחרית.

דוגמה שלישית: למשפחה נולד בשעה טובה בן בכור. האם הסיכוי כי הילד השני במשפחה זו יהיה (אם וכאשר יוולד) גם הוא בן, גדל? הנה מאמר שטוען שייתכן שכן. עיקרי הדברים: בדנמרק נאספו נתונים לגבי סדר הלידה ויחס המינים של כ-1.4 מיליון ילדים, בכ-700 אלף משפחות, במשך תקופה של כ-35 שנה. 51.2% מהבכורים היו בנים. בקרב המשפחות שבהן היו 3 בנים, והיה הבן ילד רביעי, 52.4% מקרב הילדים הרביעיים היו בנים. ההבדל מובהק, כמובן (p=0.009). בואו נתעלם מ-cherry picking אפשרי[5]. כמה משפחות בנות 4 ילדים יש בדנמרק? מחיפוש ראשוני שערכתי עולה כי מדובר בפחות מ-10%מהמשפחות. בואו נניח שזה 10%. אז עכשיו אנחנו מדברים על 70 אלף משפחות בנות 4 ילדים. ההסתברות ששלושת הילדים הראשונים הם בנים היא בעךך 0.013. נעגל את זה ל-0.02. זה מותיר לנו 1400 משפחות בנות ארבעה ילדים שבהן שלושת הילדים הראשונים הם בנים. 51.2% מקרב הילדים הצעירים היו "צריכים" להיות בנים, בפועל היו 52.4% – הפרש של 1.2%.  1.2% מ-1400 זה , 16.8, בואו נעגל ל-17, וזאת בתקופת זמן של 35 שנה, כלומר כל שנה נולדו 0.48 יותר בנים ממה שהיה "צריך" להיות. מי חושב שזה משמעותי?

דוגמה רביעית: חברת אינטרנט עושה AB testing, בה היא בודקת את השפעתו של פיצ'ר חדש במוצר שלה על ההסתברות שלקוח המשתמש במוצר יקנה את גירסת ה-PRO, בתשלום. מסתבר כי אחוז המשלמים יגדל מ-24.6% ל-24.8%, והתוצאה מובהקת [6]. האם זה משמעותי?[7] ובכן, אם נניח שהתשלום לגירסת הפרו הוא 5$ ויש 100000 משתמשים, הרי שמדובר בתוספת הכנסות של 100$. שווה? אם לעומת זאת יש מיליון משתמשים והתשלום הוא 50$, מדובר בתוספת הכנסה של 10000 דולר. 30 מיליון משתמשים ותשלום של 500$ יביאו את תוספת ההכנסות ל-3 מיליון דולר, וזה בהחלט משמעותי. תגידו: אם כבר השקענו את הכסף בפיתוח, אז ניקח את מה שיצא. יש בזה משהו. אבל אני מקווה שעושים קודם כל הערכה של עלויות הפיתוח ושל ההכנסות הצפויות מהפיצ'ר החדש.[8]

נחזור לרגע לגודל המדגם הדרוש, כ-728 אלף נבדקים. אולי ענקית כמו גוגל יכולה להרשות לעצמה מדגם כזה. אני מניח שחברות קטנות יותר צריכות להסתפק בגודל מדגם קטן יותר. הן עומדות לכן בפני הברירה הבאה: אפשרות אחת היא לערוך מבחן סטטיסטי ואז רוב הסיכויים הם שאפקט כזה (ואפילו אפקט גדול יותר) לא יזוהה כמובהק. הן כמובן יכולות לשחק בסוגי הטעות, ולאפשר טעות מסוג ראשון (false positive) גבוהה יותר כדי להשיג עוצמה גבוהה יותר. אפשרות אחרת היא לוותר מראש על בדיקת המובהקות, ולסמוך ידיהם על האפקט הנומינלי. יש לכך תומכים, הבולט בהם הוא הסטטיסטיקאי אנדרו גלמן מאוניברסיטת קולומביה.[9]

מסקנות: לפני שרצים לחקור, צריך להעריך מראש איזה תוצאה תיחשב למשמעותית, ולחשוב מה דרוש לעשות כדי לבדוק האם התוצאה אכן מתקיימת. יש להעריך מראש מה ההסתברות לכל אחת משתי הטעויות האפשריות, שכן ההסתברויות האלה קיימות וחיוביות גם אם לא משתמשים במבחנים סטטיסטיים.


הערות
  1. בהסטיית התקן של כל קבוצה היא 5.  תבדקו בעצמכם  []
  2. למשל Nature או סיינטיפיק טמקא []
  3.  Relapsing Remitting Multiple Sclerosis  []
  4. כלומר ההסתברות לתוצאת False Negative  תהיה 10% []
  5. מה קרה במשפחות בנות שני ילדים? ומשפחות בנות 3 ילדים? למה זה לא מדווח? אם זה לא באבסטרקט של המאמר, כנראה שזה לא היה מובהק []
  6. כדי לזהות הבדל כזה כמובהק, יש צורך בגודל מדגם של כ-728000 נבדקים, אבל נעזוב את זה כרגע []
  7. נתקלתי בחברה שמעדכנת גירסת תכנה כאשר ביצועי הגירסה החדשה גבוהים נומינלית ב-0.2% מביצועי הגירסה הישנה, על סמך מדגם בגודל 1000, כמובן בלי בדיקת מובהקות []
  8. אפשר למשל לערוך סקר משתמשים, או לכנס focus group []
  9. אני מתכוון לסקור את הגישה של גלמן ואת הגישה הנגדית, שמוביל ג'ון יואנידיס ברשימה קרובה []

בעיית המטריות: איך לא להירטב?

השבוע שוב פרסמתי בטוויטר חידה הסתברותית: לבנאדם יש המון מטריות, חלקן בבית וחלק במשרד. אם יורד גשם הוא לוקח איתו מטריה מהמלאי. אם לא, הוא הולך לדרכו בלי לקחת מטריה. האם הוא יירטב? מספר המשיבים היה קטן יחסית, אבל רובם ידעו את התשובה הנכונה: בסופו של דבר הוא יירטב.

פתרון החידה מתבסס על מודל הסתברותי הנקרא שרשרת מרקוב. בויקיפדיה יש הסבר פורמלי טוב של המושג ההסתברותי. כאן, כהרגלי, אנסה להסביר את המושג באופן יותר אינטואיטיבי. לאחר ההסבר הבסיסי אסביר מדוע שרשרת מרקוב היא מודל טוב עבור החידה, ואראה כיצד מגיעים לפתרון.

שרשרת מרקוב היא תהליך מקרי. לשרשרת יש מספר מצבים (שיכול להיות סופי או אינסופי), ובכל צעד בשרשרת, נמצאים באחד המצבים האפשריים, ובצעד הבא עוברים ממצב זה למצב אחר, או נשארים במקום. המעבר נקבע באופן מקרי על סמך הסתברויות קבועות.

לדוגמא, נניח שיש לנו שרשרת מרקוב שבה יש שלושה מצבים אפשריים. נסמן אותם בספרות 0, 1, ו-2. השרשרת יכולה להראות כך: 0, 2, 1, 0, 0, 2, 1, 2, … וכן הלאה. פירוש הדבר הוא שהתחלנו במצב 0, משם עברנו למצב 2, משם עברנו למצב 1, וכן הלאה.

התכונה החשובה של המודל ההסתברותי הזה היא שלא משנה באיזה מצב נמצאים, המעבר למצב הבא לא תלוי בהיסטוריה של השרשרת, אלא רק במצב הנוכחי. אם השרשרת נמצאת במצב 2, למשל, ההסתברות שהיא תעבור למצב 1 היא אותה הסתברות גם במקרה שהשרשרת הגיע למצב הנוכחי ממצב 0 וגם במקרה שהיא הגיע למצב הנוכחי ממצב 1 או 2. כלל המעבר הוא אותו כלל.

כלל מעבר אפשרי כאשר נמצאים במצב 0, הוא שעוברים ממנו למצב 1 בהסתברות 1/2, עוברים למצב 2 בהסתברות 1/3, או שנשארים במצב 0 בהסתברות 1/6.[1]. באופן דומה יש לנו כללי מעבר דומים כאשר נמצאים במצב 1 או במצב 2.

עכשיו נראה איך המושג של שרשרת מרקוב עוזר לנו לפתור את בעיית המטריות.

בואו נסתכל תחילה על מקרה פרטי, בו לאיש שלנו יש רק מטריה אחת. נגדיר את המצבים של השרשרת להיות מספר המטריות שעומדות לרשות האיש. זה פשוט: או שיש לו מטריה במקום שבו הוא נמצא, או שאין לו. לכן המצבים האפשריים יהיו 0 ו-1.

איך הוא עובר ממצב למצב? זה תלוי בהסתברות שירד גשם. ההסתברות הזו לו נתונה לנו, ולכן אניח כי ההסתברות שירד גשם במקום בו הוא נמצא ועומד לצאת לדרכו היא קבועה ושווה ל-P כאשר P הוא מספר כלשהו בין 0 ל-1 (לא כולל את 0 ו-1). בכך הגדרנו מודל המתאר את תנאי החידה.[2]

אם האיש שלנו נמצא במצב 1, כלומר יש לו מטריה בהישג יד, ויורד גשם, הוא ייקח עימו את המטריה למחוז חפצו, ושם שוב תעמוד המטריה לרשותו, כלומר הוא יישאר במצב 1. זה קורה בהסתברות P. אם לעומת זאת יש לו מטריה ולא יורד גשם, הוא הולך לדרכו בלי המטריה, ואז, במחוז חפצו, לא תעמוד לרשותו המטריה, כלומר הוא עובר ממצב 1 למצב 0 בהסתברות 1-P.

לעומת זאת, אם הוא נמצא במצב 0, אז הוא יעבור למצב 1 בהסתברות 1, כי לא משנה אם יורד גשם או לא יורד גשם, אין לו ברירה אלא לצאת לדרכו בלי מטריה, והמטריה תחכה לו במחוז חפצו.

כמובן, אם הוא נמצא במצב 0 ויורד גשם, אז הוא יירטב.

כעת אטען כי אם נסתכל על כל הפעמים שהוא נמצא במצב 1, בסופו של דבר הוא יעבור בודאות למצב 0. תחשבו על קוביה. אם תטילו אותה פעם אחת, ההסתברות שהיא תראה 6 היא 1/6. אבל ככל שתטילו אותה יותר ויותר פעמים גדל הסיכוי ש-6 יופיע בסופו של דבר. יתרה מזאת, אם נמשיך להטיל את הקוביה עוד ועוד, המספר 6 יופיע עוד ועוד פעמים. אם נטיל את הקוביה אינסוף פעמים, המספר 6 יופיע אינסוף פעמים, וזאת בהסתברות של 100%.[3].

באופן דומה אפשר להוכיח כי אם נסתכל על כל הפעמים שהוא נמצא במצב 0, ואם השרשרת תרוץ עד איסוף הוא יהיה במצב 0 איסוף פעמים, בסופו של דבר ירד שם גשם, ולכן הוא יירטב.

מה קורה אם יש לו יותר ממטריה אחת?

כעת המצבים הם 0, 1 , ו-2.

אם יש לו מטריה אחת (מצב 1), הוא יעבור למצב 2, בו יש לו שתי מטריות, בהסתברות P (יורד גשם, והוא לוקח איתו את המטריה למקום שיש בו כבר מטריה אחת) או שיישאר במצב 1 (לא יורד גשם, ולכן הוא הולך בלי מטריה למקום ששיש בו מטריה אחת).

אם יש לו 2 מטריות הוא נמצא במצב 2, ויכול לעבור משם למצב 0 (כאשר לא יורד גשם, ולכן הוא הולך למקום בו אין לא אף מטריה) או לעבור למצב 1 (יורד גשם, הוא לוקח עימו מטריה למקום בו אין מטריות, ולכן תעמוד שם לרשותו מטריה 1.

אם הוא במצב 0 ויורד גשם הוא יירטב.

אם השרשרת תרוץ מספיק זמן היא תגיע בסופו של דבר למצב 0, ובסופו של דבר ירד גשם כאשר הוא במצב 0, אז הוא יירטב.

ומה אם יש לו המון מטריות? 4, או 50 או 1000? זזה לא משנה. הטיעון עדיין עובד. בסופו של דבר הוא יגיע למצב 0 כאשר יורד גשם, כלומר בסופו של דבר הוא יירטב.

מסקנה: תמיד תקחו אתכם את המטריה.


הערות
  1. ודאו ששלושת ההסתברויות שציינתי מסתכמות ל-1! []
  2. אני סבור שגם כאשר P משתנה ואינו קבוע כל הזמן אפשר להגדיר שרשרת מרקוב מתאימה, עם מספר אינסופי של מצבים, ולהגיע לאותה תשובה, אך לא אכנס לזה כאן, או בכלל []
  3. אפשר להוכיח זאת באופן מתמטי []