חיפוש באתר

קישורים

RSS סטטיסטיקה ברשת

עמודים

קטגוריות

תגיות

למה זה לא רעיון טוב לחשב מתאם בין מספר סידורי לכל דבר בעצם

לפני כשבועיים הבאתי כאן דוגמה לסטטיסטיקה רעה, בה מרצה בקורס Data Science הדגימה כיצד מחשבים בפייתון מקדם מתאם. היא השתמשה בקובץ שהכיל נתונים על סרטים, וחישבה את מקדם המתאם בין המספר הסידורי של הסרט בבסיס הנתונים ובין הרייטינג הממוצע שלו.[1]

לי ברור כי זו סטטיסטיקה רעה, אך היו כאלה שלא הסכימו איתי. לכן אסביר מה בדיוק הבעיה כאן, ואתייחס לטענות התומכות בחישוב של הגברת הנחמדה[2]

כדי להבין מה קרה פה, צריך לחזור ליסודות – סולמות מדידה. כתבתי בעבר סקירה נרחבת בנושא. יישנם ארבעה סולמות מדידה, שניים מהם מכונים סולמות כמותיים, ושניים הם סולמות איכותיים. סולמות כמותיים, מטבעם, מודדים כמויות.

אני חושב שלא קשה להשתכנע כי המספר הסידורי של סרט בבסיס הנתונים אינו משתנה כמותי. סרט מספר 4800 בדטהבייס אינו פי שניים[3] מסרט מספר 2400. ההבדל[4] בין סרט מספר 2 לסרט מספר 4 אינו שווה להבדל בין סרט מספר 2400 לסרט מספר 2402. האם מישהו יכול לטעון אחרת, ולנמק את טענתו? אני חושב שלא.[5]

מקדם המתאם חישבה המרצה הוא מקדם המתאם של פירסון. מקדם מתאם זה נועד למשתנים כמותיים. הוא קשור קשר הדוק למודל הרגרסיה הלינארית, שהצגתי בקצרה ברשימה קודמת. סוף פסוק. לכאורה.

אבל מה שברור לי לא ברור לכל אחד.

הטענה הראשונה שהועלתה כדי להצדיק את החישוב שערכה המרצה הנ"ל היא שאין שום בעיה, והחישוב רק נועד להדגים את חישוב מקדם המתאם.

האמת היא שאין לי מה לומר נגד טיעון כזה. אני חושב שלדברים שעושים צריכה להיות משמעות, בייחוד כאשר מדובר בקורס מבוא לדטה סיינס. דיברתי כאן באריכות לגבי ההבדלים בין מודלים ואלגוריתמים. המרצה הדגימה את הפעלת האלגוריתם בלי להתייחס למודל הסטטיסטי שעמד בבסיסו, ולדעתי זה לא נכון. המרצה אף הוסיפה חטא על פשע כאשר עברה הלאה בלי להתייחס בכלל לתוצאה שהתקבלה ולמשמעות שלה.

הטענה השניה שהועלתה היא שייתכן כי המספר הסידורי טומן בחובו אינפורמציה נוספת. ייתכן למשל, טענו, כי ככל שהמספר הסידורי קטן יותר, אז הסרט ישן יותר. במילים אחרות, נטען כי המספר הסידורי מבטא סדר בין הנתונים, ולא משמש לזיהוי בלבד.

זו בהחלט טענה מתוחכמת יותר ואכן יש מקרים שבהם מספר מזהה מייצג גם סדר, לפחות חלקי. דוגמאות אפשריות הם מספרי תעודת הזהות, מספרים אישיים בצה"ל, ואלי גם מספרי רישוי של מכוניות[6]

לכך יש לי שתי תשובות. ראשית, גם אם מספרי הזיהוי מכילים בתוכם אינפורמציה על סדר, הם עדיין לא משתנים כמותיים, ולכן השימוש במקדם המתאם של פירסון שגוי. יש מקדמי מתאם שפותחו עבור משתנים סודרים, הידוע שבהם הוא מקדם המתאם של ספירמן[7]

אבל לפני ששרצים לחישוב מקדם מתאם, אפילו זה של ספירמן, צריך לבדוק האם ההנחה כי המספר המזהה של הסרט מכיל אינפורמציה על סדר היא נכונה[8] סטטיסטיקאי טוב אמור לבדוק את ההנחות, וגם דטה סיינטיסט (להבדיל מדטה-טכנאי) אמור לעשות את זה. לבדוק את הטענה זה קל. הנה הקישור לקובץ הנתונים (קובץ zip). מי שממש רוצה להיות בטוח יפתח מתוך הזיפ את הקובץ movies.csv. סרט מספר 1 הוא Toy story, משנת 1995. סרט מספר 80827 הוא Brown of Harvard משנת 1926. סרט מספר 131262 הוא Innocence משנת 2014. ולא צריך לעבוד קשה כדי לגלות את זה. אפשר לעשות את זה בכמה שורות בפייתון, אם רוצים. אבל לא צריך לעבוד כל כך קשה. כל מה שצריך זה לקרוא את readme.txt.

הטענה השלישית היא כנראה החזקה מכולן. אצטט אותה כלשונה:


חישוב מתאם עם מספר סידורי במאגר כלשהו יכול להיות דווקא מועיל בשני היבטים שונים:
1. גילוי קשר עם סדר הרישום במאגר שלא היה ידוע.
2. במקרה שלא אמור להיות קשר עם הסדר, מספק אמדן די טוב לגובה המתאם שלא צריך לייחס לו משמעות, אפילו אם יצא מובהק.

במילים אחרות, חישוב מקדם המתאם של המספר הסידורי עם משתנה כלשהו, יכול להועיל בכך שהחישוב יראה אם יש או אין אינפורמציה על סדר (או על משהו אחר) במספר הסידורי. כך נדע האם הטענה לפיה במספר הסידורי יש גם אינפורמציה על סדר כלשהו (כפי שטענו אחדים) אכן נכונה. זו אכן היוריסטיקה שעובדת. בקובץ נתוני הסרטים, מקדם המתאם בין שנת היציאה לאור של הסרט ובין המספר הסידורי שלו הוא, דרך אגב, 0.019.

אבל לדעתי אין בהיוריסטיקה הזו הרבה תועלת. למה לבדוק אם המספר הסידורי מכיל אינפורמציה על שנת היציאה לאור, אם כבר יש לנו את הנתון של שנת היציאה לאור? הרי יש שתי אפשרויות: אפשרות אחת היא שנמצא שאין מתאם, ואז אין תועלת במספר הסידורי מעבר להיותו מזהה של תצפיות. אפשרות שניה היא שנמצא שיש מתאם, אבל זה לא יקדם אותנו לשום מקום. למה להשתמש במספר הסידורי שמכיל אינפורמציה חלקית (בהנחה הסבירה שהמתאם קטן מ-1), כאשר יש לנו משתנה עם האינפורמציה המלאה?

לסיכום: חישוב מקדם המתאם בין משתנה של מספר סידורי (ובכלל משתנה שמי כלשהו) הוא גם שגוי וגם חסר תועלת, ומהווה סימן אזהרה לסטטיסטיקה רעה.

 


הערות
  1. הרייטינג הממוצע הוא בעצמו יצור בעייתי מבחינה סטטיסטית, ואקדיש לו רשימה אחרת []
  2. היא באמת נחמדה, בלי ציניות []
  3. פי שניים מה בדיוק? []
  4. איזה הבדל בדיוק? []
  5. ובכל זאת לא אופתע אם מישהו יקום ויגיד שכן []
  6. ככה זה היה בישראל, לפחות, עד סוף שנות ה-70 של המאה ה-20 []
  7. חבילת התכנה NumPy של פייתון לא מאפשרת לערוך חישוב כה מתוחכם []
  8. ואני לא רואה שום סיבה הגיונית להניח את זה מלכתחילה []

מודלים ואלגוריתמים: מה ההבדל ומה הבעיה

לאחרונה השתתפתי בכמה דיונים בפייסבוק שהגיעו למבוי סתום. ניסיתי להבין למה זה קורה ולבסוף הבנתי: אני דיברתי על מודלים והם דיברו על אלגוריתמים.

לכאורה לא צריכה להיות שום בעיה. מודל זה דבר אחד, אלגוריתם זה דבר אחר. אם תחפשו בגוגל מודל, לא תמצאו שום מקום שיטען כי מודל הוא אלגוריתם. גם ההיפך נכון. אז מה קורה כאן?

כדי להסביר למה אני מתכוון, יש צורך במספר שלבים. תחילה אתן הסבר קצר וכללי (ויש יאמרו: פשטני) מהו מודל ומהו אלגוריתם. אחר כך אסביר ביותר פירוט מהו מודל סטטיסטי, ואיך הוא מתקשר למושג האלגוריתם. לבסוף אסביר מנין נובע הבלבול בין שני המושגים, לפחות בהקשר הסטטיסטי, ואצביע על בעיה העולה מכך.

מהו מודל?

מודל הוא תיאור תיאורטי של תופעה מציאותית. המציאות היא בדרך כלל מורכבת, והמודל מנסה להתרכז בגורמים החשובים שבעזרתם אפשר לתאר את התופעה, לאפיין אותה, ובעיקר לחקור אותה. המודל כמובן אינו תיאור מדוייק לגמרי של המציאות, אבל הוא מספיק טוב כדי לתת תשובה אמינה לשאלות מעניינות. כל מודל מתבסס על הנחות. מודל טוב מסוגל להסביר תצפיות על המציאות ולחזות תצפיות עתידיות. מודל צריך להיות ניתן לפירוש, כלומר אינו קופסה שחורה. מודל טוב הינו חסכוני – כלומר פשוט ככל האפשר. מודל יכול להיות פיזי, למשל חלקיק הטס לו בתוך מאיץ חלקיקים, או עכבר – במדעי החיים או ברפואה. יש מודלים המבוטאים על ידי משוואות מתמטיות.

מהו אלגוריתם?

אלגוריתם הוא סדרה של הוראות לביצוע משימה מסויימת, כך שהמשימה תסתיים במספר סופי של צעדים. מתכון להכנת עוגה הוא אלגוריתם. כאשר למדתם בבית הספר (או ניסיתם ללמוד) חילוק ארוך, למדתם אלגוריתם. לכל אלגוריתם יש קלט. במקרה של הכנת עוגה, אלה החומרים שמשמים להכנתה: קמח, ביצים וכולי. אולם כאשר הדברים על אלגוריתמים מדברים בדרך כלל על אלגוריתמים מתמטיים, והקלט שלהם הוא בדרך כלל מספרים/נתונים. התוצר של האלגוריתם נקרא פלט. פלט יכול להיות למשל מנה של עוגה, או המנה המתקבלת כתוצאה של חילוק ארוך. כמו למודל, גם לאלגוריתמים יש הנחות, ויש גם תכונות, ואני לא אכנס כאן לפירוט מכיוון שידיעותיי בנושא מוגבלות.

מהו מודל סטטיסטי?

מודל סטטיסטי הוא מודל מתמטי הכולל בתוכו אלמנט מקרי. בדרך כלל המודל עוסק במדגם מתוך אוכלוסייה, ומתאר תכונות של האוכלוסייה וקשרים אפשריים ביניהם.

אתן כאן דוגמה למודל סטטיסטי פשוט, מודל הרגרסיה הלינארית. זהו אחד המודלים הפשוטים ביותר בסטטיסטיקה. יהיו נוסחאות, אך לא צריך להיבהל מהן. אלה רק אותיות וסימנים מתמטיים כמו חיבור וכפל. אסביר בדיוק ובפשטות מה זה כל דבר. הנה המודל:

למודל. (כשהייתי בשנה ב', כתבתי בעצמי תכנית מחשב כזו, בשפת פורטרן).

 

מה רואים כאן?

בשורה/נוסחה הראשונה יש אותיות לטיניות גדולות: X ו-Y. אלה הם המשתנים של המודל. המודל מנסה להסביר את הקשר בין המשתנים. X יכול להיות למשל המשקל של אדם, ו-Y יכול להיות הגובה שלו. אפנה את תשומת ליבכם לכך שהמודל מניח כי X ו-Y הם משתנים כמותיים ורציפים, למרות שזה לא כתוב במפורש בנוסחה. X ו-Y יכולים להיות משקל, גובה, גובה המשכורת, דברים כאלה, אבל לא מספר ההתקפים שהיו לחולה במשך שנה, לא מספר נעליים, ובטח לא מספר קו האוטובוס שעובר בשכונה.

נמשיך בהסבר: בנוסחאות יש גם אותיות יווניות קטנות: אלפא, ביתא, וגם סיגמה. אלה הם הפרמטרים של המודל. הם מתארים את הקשר בין המשתנים X ו-Y.

בעולם מושלם, אלפא וביתא לבדם היו מספיקים לתאר את הקשר בין X ל-Y. קח את המשקל של אדם בקילוגרמים (X), תכפיל אותו ב-0.5, תוסיף 136, ותקבל את הגובה שלו בסנטימטרים.[1] קשר כזה בין המשתנים נקרא "קשר לינארי". זוהי ההנחה השניה של המודל: בעולם מושלם, הקשר בין X ל-Y הוא לינארי.

אבל העולם אינו מושלם. בעולם מושלם הייתי צריך להתנשא לגובה של 188 ס"מ, אבל גובהי רק 180. האות e מבטאת את ההבדל בין העולם המושלם והעולם האמיתי – במקרה שלי 8 ס"מ.

אם יש לכם קובץ עם הרבה נתונים של משקל וגובה, יהיו לכם גם הרבה ערכים של e. המודל מניח כי אם תציירו גרף של כל הערכים של e תקבלו צורת פעמון – התפלגות הערכים של e היא נורמלית. ההנחה הזו – השלישית במודל שלנו, מתוארת בשורה השניה על ידי הסימן ~ והאות N. המודל מניח עוד הנחה על הפעמון: המרכז שלו, הממוצע של כל הערכים של e, נמצא ב-0. יהיו ערכים חיוביים של e, יהיו גם ערכים שליליים, והם יקזזו אחד את השני. הפרמטר סיגמה מבטא את צורת הפעמון. אם לסיגמה יש ערך גבוה יחסית, נקבל פעמון נמוך ורחב. זה אומר שיש הרבה ערכים של סיגמה שרחוקים מאפס. יש הרבה טעויות גדולות, לשני הכיוונים. אם לסיגמה יש ערך נמוך, הפעמון הוא גבוה וצר, כלומר רוב הטעויות הן קטנות וקרובות יחסית לאפס. ככל שסיגמה קרוב יותר לאפס, העולם "יותר מושלם". אם סיגמה שווה לאפס – זה אומר שאנחנו באמת בעולם מושלם (לא יקרה).

אציין שיש למודל הזה עוד הנחה אחת, אך היא יותר טכנית במהותה ולא אתאר אותה כאן.

עד כאן תיאור המודל.

נניח עכשיו כי יש לנו קובץ, ובו יש לנו נתונים על גובהם ומשקלם של מדגם של אנשים. אנחנו יכולים לשאול הרבה שאלות מעניינות. למשל: האם המודל של רגרסיה לינארית מתאים לנתונים? האם ההנחות של המודל מתקיימות? האם הקשר בין הגובה למשקל הוא לינארי? ואם לא, עד כמה הקשר קרוב לקשר לינארי? מהם הערכים של אלפא, ביתא וסיגמה? ועד כמה הם שונים באופן מובהק מאפס? ועוד הרבה שאלות אחרות. יש דרכים לקבל תשובות לשאלות האלה, כמובן לא בוודאות מלאה, שהרי מדובר כאן במדגם.

לערכים של אלפא ביתא וסיגמה, למשל, אפשר לקבל אומדנים. מייד יופיעו כאן נוסחאות לחישוב האומדנים לאלפא ולביתא. לא להיבהל, הן ממש לא חשובות לדיון שלנו, אני מציג אותן רק למקרה שמישהו יפקפק בקיומן. תסתכלו להן בעיניים ותעברו הלאה:

למודל. (כשהייתי בשנה ב', כתבתי בעצמי תכנית מחשב כזו, בשפת פורטרן).

 

מה שחשוב כאן זה להבין שהנוסחאות האלה מסבירות איך לקחת את הנתונים, שמסומנים על ידי x ו-y, ולבצע איתם חישובים שיתנו לנו אמדנים לערכים של אלפא וביתא. הנוסחאות האלה מגדירות אלגוריתם. הנתונים הם הקלט, האמדנים הם הפלט. אפשר לכתוב תכנית מחשב שתבצע את החישובים האלה עבורכם, ועוד הרבה חישובים אחרים, שיענו לשאלות אחרות שאפשר לשאול בקשר למודל. (כשהייתי בשנה ב', כתבתי בעצמי תכנית מחשב כזו, בשפת פורטרן).

ככלל, לכל מודל סטטיסטי מתלווים כמה אלגוריתמים, שמגדירים כיצד למצוא את התשובות לשאלות שאפשר לשאול על המודל.

מה בקשר להיפך? האם לכל אלגוריתם יש מודל שעומד בבסיסו (לא בהכרח סטטיסטי)? האמת היא שאני לא בטוח בתשובה. אני מזמין את מי שיודע (או חושב שהוא יודע) לענות לשאלה מעניינת זו.

אז מה הבעיה?

הבעיה הגדולה היא שהאלגוריתם עיוור למודל. הנוסחאות שהצגתי לחישוב האומדנים לאלפא וביתא "לא יודעות" שהן נובעות מהמודל, ולא איכפת להן אם ההנחות של המודל מתקיימות או לא. אתם יכולים, למשל, לקחת קובץ נתונים על שחקני כדורסל, להחליט ש-x הוא מספר הנעליים של שחקן, ו-y הוא מספר החולצה שלו. הנוסחאות יעבדו. תכנית המחשב לא תוציא הודעת שגיאה. פייתון לא יקרוס.

וזה נכון גם לאלגוריתמים אחרים. אתם יכולים גם לחשב את מקדם המתאם בין מספרי הנעליים של השחקנים ומספרי החולצה שלהם. או לחשב לכל שחקן את הממוצע של מספר החולצה ומספר הנעליים. נשמע מופרך? בפורום סטטיסטיקה והסתברות בפייסבוק היו כאלה חשבו שלחשב את מקדם המתאם בין המספר הסידורי של סרט בדטהבייס ובין הרייטינג הממוצע שלו זה בסדר גמור. ובפורום ML הסבירו לי שאין שום בעיה לשקלל את משקלו של אדם עם מנת המשכל שלו (אם רק עושים סקיילינג. אל תשכחו לעשות סקיילינג!). וכשטענתי שאין משמעות לשקלול של משקל הגוף ומנת המשכל, ענה לי סניור דטה סיינטיסט אחד כי "המשמעות אינה חשובה".

נכון שאפשר להריץ את כל האלגוריתמים האלה בלי להבין את המתמטיקה שעומדת בבסיסם. אפשר "לבנות מודל" – זאת אומרת, לבנות איזשהו אלגוריתם קצת יותר מסובך מאבני בניין של אלגוריתמים יותר פשוטים. אפשר לקחת את כל הנתונים ולזרוק אותם ל-xgboost . אני יודע שיש אנשים שעושים את זה, ומה איכפת להם? אם זה יביא לחברה שלהם עוד 30,000 דולר, זה מה שחשוב, ואני לא אומר שזה לא חשוב.

אני חושב שהמשמעות חשובה. אני חושב שאם אתה משתמש במודל, אתה צריך להבין מה הפירוש של המודל, לדעת מה ההנחות שעומדות בבסיסו, וכן, גם לדעת מה המגבלות שלו. ומי שלא מבין, ולא יודע, ולא איכפת לו, הוא מהנדס במקרה הטוב, טכנאי במקרה הפחות טוב, ובשום אופן לא מדען. במה שהוא עושה יש אכן הרבה דטה, אבל מעט מאוד סיינס. וצריך להכיר בזה. וכל אחד צריך לשאול את עצמו מה הוא באמת.


הערות
  1. את הערכים המספריים שנתתי כאן לאלפא וביתא חישבתי על פי קובץ הנתונים body, בו השתמשתי גם ברשימה על ה-PCA []

מחקר האוצר על "שכר המינימום ונזקיו" – 13 שנים מאוחר יותר

בשנת 2004 פירסם משרד האוצר מחקר על "שכר המינימום ונזקיו", ובו הזהירו חכמי המשרד מפני הקטסטרופה הכלכלית שתתרחש אם יועלה שכר המינימום. נזכרתי בעובדה הזו בעקבות ציוץ מתבדח בטוויטר . המחקר ההוא היה מופת של סטטיסטיקה רעה: "מדגם" מוטה בכוונה תחילה – נבחרו רק הנתונים שהתאימו לאג'נדה, בלבול בין מתאם לסיבתיות, שימוש במדדים בעייתיים, זריקת מספרים חסרי ביסוס והצגה מעוותת של הנתונים (המעוותים). תוכלו לחזור ולקרוא את כל הביקורת שלי על המחקר ההוא.

13 שנים מאוחר יותר, אני סבור שהקטסטרופה הכלכלית לא התרחשה. עסקים לא פשטו רגל בהמוניהם, האבטלה לא עלתה (ראש הממשלה מתגאה באבטלה הנמוכה), ובכלל הכלכלה "במצב מצויין" לפחות בנתוני המקרו (במיקרו זה כנראה סיפור אחר, אבל נעזוב את זה כרגע).

האם במבט לאחור אנשי משרד האוצר סבורים שמסקנות המחקר היו בעייתיות לכל הפחות? כן ולא.

מצד אחד, המחקר ההוא נגנז. בפוסט שלי מ-2004 היה לינק למחקר. הנה הוא שוב: http://www.mof.gov.il/research/skiraframe.htm. אל תטרחו ללחוץ. הלינק הזה מוביל עכשיו להודעת שגיאה. ניסיתי לחפש אותו בגוגל. אמנם לא מצאתי אותו, אבל כן מצאתי מחקר חדש! משנת 2016! "השפעת השינויים בשכר המינימום על התעסוקה והשכר
בישראל"! (קישור לקובץ pdf). קראתי (לא בעיון רב, אני מודה). [1]

מה מתברר?

המחקר חדש, השטיקים אותם שטיקים. שוב המדגם המוטה, שוב בלבול בין מתאם וסיבתיות, שוב שימוש במדדים בעיתיים, שוב הצגה מעוותת של הנתונים, ושוב אותה מסקנה. הקטסטרופה בדרך.

מה אין במחקר החדש? נכון מאוד – אין התייחסות למחקר הישן, וזה מאוד נוח, כי כך אין צורך להתייחס אליו ולדון בשאלות מטרידות, כמו למשל האם התחזיות של המחקר ההוא התממשו (הן לא).

סיכום בשתי מילים: זאב זאב


הערות
  1. עדכון: המחקר המקורי התגלה בארכיון הרשת: https://web.archive.org/web/20051103080421/http://mof.gov.il:80/research/skira11_2004/skira11_2004.pdf . תודה לאייל בר חיים! []

חמש דרכים לתקן את הסטטיסטיקה

ב-28.11.2017 הופיע בכתב העת Nature מאמר שנשא את הכותרת הפרובוקטיבית Five ways to fix statistics.

המאמר נכתב לאור "משבר השחזוריות" (reproducibility crisis) בו חשים היום חוקרים מתחומים רבים, כלומר הקושי ההולך וגובר לשחזר תוצאות מחקריות במחקר נוסף בלתי תלוי. יש הטוענים כי אחת הסיבות למשבר הזה הוא שימוש לא נכון בסטטיסטיקה. עורכי Nature פנו לחמישה סטטיסטיקאים מובילים[1] וביקשו מכל אחד מהם להמליץ של שינוי אחד בפרקטיקה הסטטיסטית שיוכל לשפר את המחקר המדעי. באופן לא מפתיע, הייתה הסכמה בין כולם כי הבעיה אינה בסטטיסטיקה עצמה, אלא באופן השימוש בה.

ברשימה זו אסקור את ההצעות שהועלו, ואביע את דעתי בנוגע לדברים שנאמרו.

ג'ף ליק מאוניברסיטת ג'ונס הופקינס טוען כי "יש להתאים את הידע האנושי" (Adjust for human cognition). כדי להשתמש היטב בסטטיסטיקה, אומר ליק, החוקרים צריכים ללמוד אי לנתח נתונים ולפרש אותם, וליישם את השיטות הסטטיסטיות תוך כדי הימנעות מהטיות קוגניטיביות. אם בעבר היה קשה לאסוף נתונים וכמות הנתונים הייתה מועטה, בימינו אין כל בעיה לאסוף כמויות ענקיות של נתונים. שיטות סטטיסטיות לניתוח נתונים בעידן החדש אכן פותחו, אבל רוב החוקרים עדיין משתמשים בשיטות ישנות (outdated), משתמשים באופן לא נכון במבחנים סטטיסטיים, ונכשלים בביאור התוצאות שקיבלו. האופן שבו משתמשים ב-p-values כדי לקבוע האם תוצאה מחקרית היא "מעניינת" הוא רק דוגמא אחת לשימוש לא נכון בסטטיסטיקה.

אולם, אומר ליק, אי אפשר לתלות את כל האשמה בשפע הנתונים ובהכשרה לא מספיקה בסטטיסטיקה. גם הקריאה להפסיק להשתמש ב-p-values ובמדדים נוספים ככלי לקבלת החלטות אינה מעשית. לעיתים קרובות צריך לקבל החלטות, ורצוי שיהיו כלים והנחיות ברורות כדי לעשות זאת.

יש להבין, מוסיף ואומר ליק, כי ניתוח נתונים אינו רק עניין חישובי/אלגוריתמי. יש בו צד התנהגותי. וההיבט ההתנהגותי של ניתוח הנתונים מושפע לרעה מכך שההכשרה הסטטיסטית הבסיסית לחוקרים מתמקדת בשיטת ישנות שלא מתאימות לבעיות איתן אנו מתמודדים כיום.

אז מה לעשות? ליק מציע להתחיל במחקרים התנהגותיים, שיובילו להבנה כיצד אנשים אוספים, מעבדים ומתחים נתונים, כיצד הם מתקשרים את התוצאות, וכיצד הם צורכים נתונים. לאחר שנבין זאת, נוכל לשפר שיטות ההוראה של הסטטיסטיקה לציבור החוקרים ולציבור הרחב.

אני מסכים עם ליק ברוב הדברים שאמר, אולם אני סבור שאין לנו די זמן לחכות עד שכל המחקרים ההתנהגותיים שהוא מציע ייערכו ותוצאותיהם יובנו ויופנמו. אני לא מתנגד לקיום המחקרים האלה. אבל יש לעשות שינוי מהותי בהוראת הסטטיסטיקה ועכשיו.

לאנדרו גלמן מאוניברסיטת קולומביה ובלייקלי מקשיין מאוניברסיטת נורתווסטרן יש עיצה פשוטה ותקיפה: לנטוש את בדיקות המובהקות. קביעת המובהקות הסטטיסטית כקריטריון לפרסום מחקרים מדעיים מובילה לכך שהמחקרים שמתפרסמים מהווים מדגם לא מייצג של הנתונים. יותר מכך, מזהירים השניים, בדיקת המובהקות נתפסת כדרך להכריע בין שתי אפשרויות: או שקיים אפקט או שלא קיים אפקט. באופן מעשי מתקיימת לדבריהם "מכבסת אי ודאות".

השניים מתייחסים גם לויכוח שמתנה כעת שמתנהל כעת בקרב הקהילה הסטטיסטית, ומתייחסים להצעה של ג'ון יואנידס להדק את מבחני המובהקות ולקבוע את הרף למובהקות על 0.005, וזאת מבלי להזכיר אותו בשמו (וכאן המקום להעיר כי למרבה הצער, עורכי נייצ'ר לא שאלו ככל הנראה את יואנידס לדעתו בעניין). הם, כמובן, מתנגדים לדעתו של יואנידס, אך לא מספקים נימוק משכנע. לחיזוק טענתם הם מביאים כדוגמא מחקר בו התוצאות היו מובהקות אך האפקט אינו משמעותי לדעתם.[2]

השניים מסכמים את דעתם באמירה שאין הם רוצים לאסור את ה-p-value, אלא מציעים שהוא יהווה רק ראיה אחת בין ראיות נוספות כגון ידע מוקדם, תכנון הניסוי, איכות הנתונים וכדומה. הם מסכמים ואומרים כי הגיע העת "להשאיר את האלכימיה של החלטות בינאריות כגון יש אפקט/אין אפקט מאחורינו"

אני מתנגד לדעתם של גלמן ומקשיין מכל וכל. אימוץ הצעתם יוביל מייד להגדלה של שיעור התוצאות החיוביות-שגויות (False positive). אני לא מתנגד להצעה לקחת בחשבון את משמעות האפקט הנצפה, תכנון הניסוי, איכות הנתונים ופרמטרים נוספים. להיפך. אולם ביטול הדרישה לתוצאה מובהקת רק יוביל ליצירת מגוון של קריטריונים שרירותיים אחרים. לדוגמא, במאמר הזה, שיש בו הרבה דוגמאות לסטטיסטיקה רעה, החוקרים מחשבים את גודל האפקט בעזרת מדד Hedges’ g, ומחליטים כי אפקט ייחשב כמשמעותי אם האפקט לפי מדד זה גדול מ-1.3. מדוע 1.3? ההסבר לכך קלוש ולא מספק. בכל מקרה, לקריטריון כזה ולדומיו אין בסיס תיאורטי מוצק, בניגוד לתיאוריה של בדיקת ההשערות, המתבססת על הלמה של ניימן ופירסון.

דויד קולקיוהון מיוניברסיטי קולג' בלונדון מציע כי בנוסף ל-p-value ומדדים נוספים, יפורסם גם הסיכון לתוצאה חיובית שגויה (False positive risk או FPR .(FPR, לדבריו, תמיד גדול בערכו מה-p-value. החישוב של FPR הוא בייסיאני במהותו ומתבסס על ההסתברות האפריורית לאפקט אמיתי. על פי חישוביו, אם ההסתברות האפריורית הנ"ל היא 10%, וה-p-value קרוב ל-0.05, אז ה-FPR הוא 76%. עם זאת, הוא מודה שאין דרך לדעת מה היא ההסתברות האפריורית לאפקט אמיתי. פתרון אפשרי: להניח כי ההסתברות האפריורית היא 0.5 ולחשב את ה-FPR המינימלי עבור ה-p-value הנצפה.

אני בהחלט בעד הרעיון לפרסם את ה-FPR, אולם הבעיה היא שאין שום דרך נכונה לחשב אותו. יש כמה בעיות בהצעה של קולקיוהון. ראשית, הוא שוכח שה-p-value פותח כקריטריון לקביעת מובהקות (יותר קל לבדוק אם הוא קטן או גדול מ-5%, מאשר ללכת לחפש בטבלת התפלגות t את הערך הקריטי). אמנם יש אינטרפרטציה לערכו המספרי של ה-p-value, אך אין להסיק ממנו כי המובהקות היא מושג רציף, כפי שלמעשה עולה מדבריו. לאמירה כי ה-FPR גדול תמיד בערכו מה-p-value אין משמעות, זו השוואת תפוחים לתפוזים. אמירה בעלת משמעות תהיה אם קולקיוהון יוכל להשוות בין ה-False Positive Risk ובין ה-False Positive Rate. ההצעה להניח כי ההסתברות האפריורית לאפקט אמיתי היא 50% תמוהה בעיני. זהו פתרון של "חצי קפה חצי תה", ולדעתי ההנחה לא מציאותית. אני סבור כי חוקרים לא ישקיעו את משאביהם במחקר אם הם לא סבורים בביטחון גבוה כי המחקר יוביל לתוצאה משמעותית, זאת מכיוון שכל הצעת מחקר[3] , (רשמית או לא)  לוקחת בחשבון את הידע הקודם שנצבר אודות נושא המחקר, ואת התיאוריה המצדיקה את קיום המחקר הבא. לכן, ההסתברות האפריורית לאפקט אמיתי גבוהה בהרבה מ-50%, ולדעתי היא בדרך כלל לפחות 80%, אם לא יותר.

למישל ב. נויטן מאוניברסיטת טילבורג בהולנד יש הצעה פשוטה: לפרסם את התכניות לניתוח סטטיסטי (analysis plans). גם שאלות מחקריות פשוטות לכאורה (כגון האם תרופה א עדיפה על תרופה ב) יכולות להוביל לשפע אפשרויות של ניתוחים סטטיסטיים. בתוך השפע הזה, אומרת נויטן, סביר להניח שיש שיטת ניתוח שתוביל לתוצאה מובהקת[4] תכנון מראש ופתיחות, אומרת נויטן, יוכלו לעזור לחוקרים להמנע מתוצאות חיוביות שגויות. נויטן מציע כי החוקרים יכינו מראש תכניות ניתוח סטטיסטי, ואף יפרסמו אותן. השלב הבא יהיה פירסום של כל הנתונים שנאספו, של התוצאות, ואף תכניות מחשב (למשל קוד R). כך כל אחד יוכל לשפוט בעצמו את איכות הניתוח הסטטיסטי, ואת התוצאות שהתקבלו.

בעולם מושלם זו הצעה נהדרת, לדעתי. אני מסכים לחלוטין עם הקביעה שיש לתכנן מראש את שיטות הניתוח הסטטיסטי, וגם עם ההצעה לפרסם גם את הנתונים המחקריים לא רק את התוצאות. למעשה, השיטה הזו היא הסטנדרט בתעשייה הפרמצבטית. כאשר נערך ניסוי קליני, השיטות הסטטיסטיות לפיהן ינותחו הנתונים שבניסוי מצויינות כבר בפרוטוקול הניסוי, ונקבעות לפני שהניסוי בכלל התחיל. במקרים רבים השיטות הסטטיסטיות מוגשות לעיון ולאישור של הרשות הרגולטורית (בדרך כלל ה-FDA). ובסיום הניסוי, כל הנתונים שנאספו מוגשים לרשות הרגולטורית, שם לרוב מנתחים אותם באופן עצמאי. עם זאת, אני יש לי ספק לגבי רמת ההיענות להצעות של נויטן בקרב ציבור החוקרים.

סטיבן נ. גודמן מאוניברסיטת סטנפורד אומר כי יש "לשנות מבפנים". הבעיה היא לא בסטטיסטיקה, אומר גודמן, אלא באופן היישום שלה במחקר המדעי[5] . הציפיות ממרצים לסטטיסטיקה הן כי הם ילמדו את הגישות הסטנדרטיות המקובלות על כתבי עת ועל עמיתים, ואיש לא מתעניין בבעיות האמיתיות, כמו למשל בהבדלים שבין מובהקות למשמעות. רוב החוקרים מעוניינים רק בידע המינימלי שיאפשר להם להפעיל את התוכנות הסטטיסטיות, כך שיוכלו לפרסם מאמרים במהירות.

גודמן מביא לדוגמא מחקר על חיזוי נטיה להתאבדות שפורסם בחודש האחרון. גודל המדגם היה 17 איש בכל קבוצה. ההצדקה למספר הזה? כותבי המאמר הסבירו כי במאמר אחר, שעסק באנשים על הקשת האוטיסטית, השתמשו באותו גודל מדגם. התרבות המחקרית גוברת על הכללים. ובכל ענף או תת-ענף מדעי יש תרבות אחרת.

מכיוון שכך, אין פתרונות קסם. מי שצריכים להיענות לאתגרים האלה הם קרנות המחקר, כתבי העת, ובעיקר מובילי הדיעה בכל ענף מדעי. ברגע שיתחיל תהליך כזה הוא יחזק את עצמו. מדענים ישתמשו בשיטות סטטיסטיות שבהן משתמשים במאמרים אחרים שכבר התפרסמו. שופטי המאמרים (peer reviewers) ידרשו מהכותבים מה ששופטים אחרים דרשו מהם.

אנחנו בשלים לרפורמה, אומר גודמן. משבר השחזוריות ממחיש לנו את העלות שנובעת מחוסר תשומת לב לתכנון ולניתוחים סטטיסטיים נאותים. חוקרים צעירים משוועים לשינוי. על מובילי הדיעה להיענות להם. לסטטיסטיקאים יש תפקיד חשוב בתהליך, אך הוא משני. השינוי צריך לבוא מבפנים – מתוך הקהילות המדעיות.

ואני מסכים עם כל מילה של גודמן.


הערות
  1. למעשה שישה []
  2. כן, יש הרבה מחקרים כאלה []
  3. כמעט []
  4. למעשה נויטן אומרת במילים יפות כי "אם תענה את הנתונים מספיק זמן הם יודו לבסוף" []
  5. לא מפתיע, נכון? []

סטטיסטיקה רעה, דוגמה מספר 37095

הסרטון הבא לקוח מקורס מקוון ל-data science באמצעות תכנות פייתון של אוניברסיטת סן דייגו.

המרצה, פרופסור למדעי המחשב ממרכז ה-data science באוניברסיטה, רוצה להדגים איך מחשבים מקדם מתאם. את ההדגמה היא מבצעת על קובץ נתונים שמכיל פרטים על סרטים שונים לאורך השנים. בלי להתבלבל, היא לוקחת את המספר הסידורי של הסרט בקובץ הנתונים, movieId, ומחשבת את מקדם המתאם בינו ובין average_rating, הדירוג הממוצע של הסרט.[1] .

צפו:


הערות
  1. whatever it means []